An adaptive finite element method for semilinear parabolic interface problems with nonzero flux jump

作者: Tanushree Ray , Rajen Kumar Sinha

DOI: 10.1016/J.APNUM.2020.03.001

关键词:

摘要: Abstract We present and analyze an adaptive finite element method for a semilinear parabolic interface problem subject to nonzero flux jump in two-dimensional bounded convex polygonal domain. The residual-based posteriori error estimates are derived using energy argument. Our strategy is avoid solving the nonlinear system by considering linearized fully discrete scheme. An algorithm constructed estimators. A global upper bound which residual interior residual, whereas local lower terms of space indicator established. theory presented complemented numerical experiments illustrate proposed algorithm.

参考文章(24)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Zhiming Chen, Shibin Dai, On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients SIAM Journal on Scientific Computing. ,vol. 24, pp. 443- 462 ,(2002) , 10.1137/S1064827501383713
Pedro Morin, Ricardo H. Nochetto, Kunibert G. Siebert, Data Oscillation and Convergence of Adaptive FEM SIAM Journal on Numerical Analysis. ,vol. 38, pp. 466- 488 ,(2000) , 10.1137/S0036142999360044
Marco Picasso, Adaptive finite elements for a linear parabolic problem Computer Methods in Applied Mechanics and Engineering. ,vol. 167, pp. 223- 237 ,(1998) , 10.1016/S0045-7825(98)00121-2
C. Bernardi, R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients Numerische Mathematik. ,vol. 85, pp. 579- 608 ,(2000) , 10.1007/PL00005393
Willy Dörfler, A convergent adaptive algorithm for Poisson's equation SIAM Journal on Numerical Analysis. ,vol. 33, pp. 1106- 1124 ,(1996) , 10.1137/0733054
Philippe G. Ciarlet, J. T. Oden, The Finite Element Method for Elliptic Problems ,(1978)
Zhiqiang Cai, Shun Zhang, Recovery-Based Error Estimator for Interface Problems: Conforming Linear Elements SIAM Journal on Numerical Analysis. ,vol. 47, pp. 2132- 2156 ,(2009) , 10.1137/080717407
R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems Computer Methods in Applied Mechanics and Engineering. ,vol. 176, pp. 419- 440 ,(1999) , 10.1016/S0045-7825(98)00347-8