The Role of Electrostatics at the Catalytic Metal Binding Site in Xylose Isomerase Action

作者: B. Asbóth , Z. Böcskei , M. Fuxreiter , G. Náray-Szabó

DOI: 10.1007/978-94-011-5171-9_19

关键词:

摘要: D-xylose isomerase (EC 5.3.1.5) catalyses the reversible conversion of to D-xylulose and is also capable converting other sugars from aldose ketose [1]. It latter activity on glucose fructose, that accounts for fact it one most widely used industrial enzymes. active in oligomeric forms requires Mg2+, Co2+ or Mn2+ activation while divalent cations, e.g Zn2+, Ba2+ Cu2+ Ca2+ inhibit catalysis [2]. The effect cation practical importance since a preceding enzyme starch bioconversion process, α-amylase, only presence calcium ions, removal which an ion exchange step.

参考文章(40)
John Jenkins, Joel Janin, Felix Rey, Mohammed Chiadmi, Herman Van Tilbeurgh, Ignace Lasters, Marc De Maeyer, Daniel Ven Belle, Shoshana J. Wodak, Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry. ,vol. 31, pp. 5449- 5458 ,(1993) , 10.1021/BI00139A005
H. L. Carrell, J. P. Glusker, V. Burger, F. Manfre, D. Tritsch, J. F. Biellmann, X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator Proceedings of the National Academy of Sciences of the United States of America. ,vol. 86, pp. 4440- 4444 ,(1991) , 10.1073/PNAS.86.12.4440
A. Warshel, G. Naray-Szabo, F. Sussman, J. K. Hwang, How do serine proteases really work Biochemistry. ,vol. 28, pp. 3629- 3637 ,(1989) , 10.1021/BI00435A001
Richard D. Whitaker, Yunje Cho, Jaeho Cha, H. L. Carrell, Jenny P. Glusker, P. Andrew Karplus, Carl A. Batt, Probing the Roles of Active Site Residues in D-Xylose Isomerase Journal of Biological Chemistry. ,vol. 270, pp. 22895- 22906 ,(1995) , 10.1074/JBC.270.39.22895
Mia Callens, Hilda Kersters-Hilderson, Omer Van Opstal, Clement K. De Bruyne, Catalytic properties of d-xylose isomerase from Streptomyces violaceoruber Enzyme and Microbial Technology. ,vol. 8, pp. 696- 700 ,(1986) , 10.1016/0141-0229(86)90069-4
C.A. Collyer, K. Henrick, D.M. Blow, Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift Journal of Molecular Biology. ,vol. 212, pp. 211- 235 ,(1993) , 10.1016/0022-2836(90)90316-E
Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography Acta Crystallographica Section D-biological Crystallography. ,vol. 50, pp. 760- 763 ,(1994) , 10.1107/S0907444994003112
C. Craik, S Roczniak, C Largman, W. Rutter, The Catalytic Role of the Active Site Aspartic Acid in Serine Proteases Science. ,vol. 237, pp. 909- 913 ,(1987) , 10.1126/SCIENCE.3303334
János Angyan, Gábor Náray-Szabó, Comparison of protein electrostatic potential along the catalytic triad of serine proteinases Journal of Theoretical Biology. ,vol. 103, pp. 349- 356 ,(1983) , 10.1016/0022-5193(83)90291-6