Fast Monte-Carlo algorithms for approximate matrix multiplication

作者: P. Drineas , R. Kannan

DOI: 10.1109/SFCS.2001.959921

关键词:

摘要: Given an m ? n matrix A and p B, we present 2 simple intuitive algorithms to compute approximation P the product with provable bounds for norm of "error matrix" - B. Both run in 0(mp+mn+np) time. In both algorithms, randomly pick s = 0(1) columns form S corresponding rows B R. After scaling R, multiply them together obtain our P. The choice probability distribution use picking are crucial features which enable us fairly elementary proofs error bounds. Our first algorithm can be implemented without storing matrices Random Access Memory, provided make two passes through (stored external memory). second has a smaller bound on 2-norm matrix, but requires storage RAM. We also fast that "describes" as sum rank one if AT.

参考文章(14)
Michael Krivelevich, H. Van Vu, Approximating the Independence Number and the Chromatic Number in Expected Polynominal Time international colloquium on automata languages and programming. pp. 13- 24 ,(2000) , 10.1007/3-540-45022-X_3
A. Frieze, R. Kannan, S. Vempala, Fast Monte-Carlo algorithms for finding low-rank approximations foundations of computer science. pp. 370- 378 ,(1998) , 10.1109/SFCS.1998.743487
Don Coppersmith, Shmuel Winograd, Matrix multiplication via arithmetic progressions Journal of Symbolic Computation. ,vol. 9, pp. 251- 280 ,(1990) , 10.1016/S0747-7171(08)80013-2
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
Volker Strassen, Gaussian elimination is not optimal Numerische Mathematik. ,vol. 13, pp. 354- 356 ,(1969) , 10.1007/BF02165411
P. Drineas, Alan Frieze, Santosh Vempala, V. Vinay, Ravi Kannan, Clustering in large graphs and matrices symposium on discrete algorithms. pp. 291- 299 ,(1999)
Michael W. Berry, Susan T. Dumais, Gavin W. O’Brien, Using Linear Algebra for Intelligent Information Retrieval SIAM Review. ,vol. 37, pp. 573- 595 ,(1995) , 10.1137/1037127
Dimitris Achlioptas, Frank McSherry, Fast computation of low rank matrix approximations Proceedings of the thirty-third annual ACM symposium on Theory of computing - STOC '01. pp. 611- 618 ,(2001) , 10.1145/380752.380858
Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices Combinatorica. ,vol. 1, pp. 233- 241 ,(1981) , 10.1007/BF02579329
Wassily Hoeffding, Probability Inequalities for sums of Bounded Random Variables Journal of the American Statistical Association. ,vol. 58, pp. 13- 30 ,(1963) , 10.1007/978-1-4612-0865-5_26