Analysis of linear determinacy for spread in cooperative models.

作者: Hans F. Weinberger , Mark A. Lewis , Bingtuan Li

DOI: 10.1007/S002850200145

关键词:

摘要: … In order to discuss linear determinacy, we need to talk about the spreading speeds of a … + = c∗ so that there is a single spreading speed, but also linear determinacy is valid. It is useful to …

参考文章(15)
Mark Grigorievich Krein, None, Linear operators leaving invariant a cone in a Banach space Amer. Math. Soc. Transl. Ser. I. ,vol. 10, pp. 199- 325 ,(1950)
Walter Rudin, Real and complex analysis ,(1966)
H. F. Weinberger, Long-Time Behavior of a Class of Biological Models SIAM Journal on Mathematical Analysis. ,vol. 13, pp. 353- 396 ,(1982) , 10.1137/0513028
R. Durrett, C. Neuhauser, Particle Systems and Reaction-Diffusion Equations Annals of Probability. ,vol. 22, pp. 289- 333 ,(1994) , 10.1214/AOP/1176988861
On the spatial spread of the grey squirrel in Britain. Proceedings of The Royal Society B: Biological Sciences. ,vol. 238, pp. 113- 125 ,(1989) , 10.1098/RSPB.1989.0070
Y Hosono, The Minimal Speed of Traveling Fronts for a Diffusive Lotka–Volterra Competition Model Bulletin of Mathematical Biology. ,vol. 60, pp. 435- 448 ,(1998) , 10.1006/BULM.1997.0008
Denis Mollison, Dependence of epidemic and population velocities on basic parameters Mathematical Biosciences. ,vol. 107, pp. 255- 287 ,(1991) , 10.1016/0025-5564(91)90009-8
F. van den Bosch, J. A. J. Metz, O. Diekmann, The velocity of spatial population expansion Journal of Mathematical Biology. ,vol. 28, pp. 529- 565 ,(1990) , 10.1007/BF00164162
Roger Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Bellman Prize in Mathematical Biosciences. ,vol. 93, pp. 269- 295 ,(1989) , 10.1016/0025-5564(89)90026-6
Roger Lui, Biological growth and spread modeled by systems of recursions. II. biological theory Bellman Prize in Mathematical Biosciences. ,vol. 93, pp. 297- 312 ,(1989) , 10.1016/0025-5564(89)90027-8