Regular and Pathological Eigenvalue Behavior for the Equation −λu″=Vuon the Semiaxis

作者: K. Naimark , M. Solomyak

DOI: 10.1006/JFAN.1997.3149

关键词:

摘要: We study the behavior of eigenvalue distribution functionn(λ) for equation−λu″=Vuon R+,u(0)=0.Typically,n(λ)=O(λ−1/2) and, moreover,λ1/2n(λ)→π−1 ∫ V dxasλ→0. obtain criteria each these relations. Examples are presented where limλ→0 λ1/2n(λ) does exist, but is not equal toπ−1 dx.

参考文章(13)
Israel Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators Published in <b>1969</b> in Providence RI) by American mathematical society. ,(1969)
M. Birman, M. Solomjak, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory American Mathematical Society. ,vol. 114, ,(1980) , 10.1090/TRANS2/114
B. Simon, G. Stolz, Operators with singular continuous spectrum, V. Sparse potentials Proceedings of the American Mathematical Society. ,vol. 124, pp. 2073- 2080 ,(1996) , 10.1090/S0002-9939-96-03465-X
Krzysztof Nowak, Schatten ideal behavior of a generalized Hardy operator Proceedings of the American Mathematical Society. ,vol. 118, pp. 479- 483 ,(1993) , 10.1090/S0002-9939-1993-1152990-6
Joshua Newman, Michael Solomyak, Two-sided estimates on singular values for a class of integral operators on the semi-axis Integral Equations and Operator Theory. ,vol. 20, pp. 335- 349 ,(1994) , 10.1007/BF01205286
M. Sh. Birman, A. Laptev, THE NEGATIVE DISCRETE SPECTRUM OF A TWO-DIMENSIONAL SCHRODINGER OPERATOR Communications on Pure and Applied Mathematics. ,vol. 49, pp. 967- 997 ,(1996) , 10.1002/(SICI)1097-0312(199609)49:9<967::AID-CPA3>3.0.CO;2-5
V Jakšić, S Molčanov, B Simon, None, Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps Journal of Functional Analysis. ,vol. 106, pp. 59- 79 ,(1992) , 10.1016/0022-1236(92)90063-O
D. B. Pearson, Singular continuous measures in scattering theory Communications in Mathematical Physics. ,vol. 60, pp. 13- 36 ,(1978) , 10.1007/BF01609472