Equivalent predictions of the circle criterion and an optimum quadratic form for a second-order system

作者: A. Tsoi , H. Power

DOI: 10.1109/TAC.1972.1100066

关键词:

摘要: It is shown that, for the equation \frac{d^{2}u}{dt^{2}} + \mu \frac{du}{dt} g (t,u,\frac{du}{dt}) \{u \lambda \frac{du}{dt}\} = 0 , maximum value of β which asymptotic stability can be guaranteed with a same whether derived by circle criterion or means quadratic Lyapunov function constant coefficients, and this explicitly evaluated.

参考文章(3)
R. W. Brockett, On the Stability of Nonlinear Feedback Systems IEEE Transactions on Applications and Industry. ,vol. 83, pp. 443- 449 ,(1964) , 10.1109/TAI.1964.5407720
R. Brockett, The status of stability theory for deterministic systems IEEE Transactions on Automatic Control. ,vol. 11, pp. 596- 606 ,(1966) , 10.1109/TAC.1966.1098354