Application of a Vector-Valued Ekeland-Type Variational Principle for Deriving Optimality Conditions

作者: G. Isac , C. Tammer

DOI: 10.1007/978-1-4419-0158-3_23

关键词:

摘要: In order to show necessary conditions for approximate solutions of vector-valued optimization problems in general spaces, we introduce an axiomatic approach a scalarization scheme. Several examples illustrate this Using Ekeland-type variational principle by Isac [12] and suitable techniques, prove the optimality under different assumptions concerning ordering cone certain differentiability objective function.

参考文章(26)
G. Isac, The Ekeland’s Principle and the Pareto ε-Efficiency Springer, Berlin, Heidelberg. pp. 148- 163 ,(1996) , 10.1007/978-3-642-87561-8_12
Christiane Tammer, A variational principle and a fixed point theorem System Modelling and Optimization. pp. 248- 257 ,(1994) , 10.1007/BFB0035473
Vyacheslav V. Kalashnikov, G. Isac, V.A. Bulavsky, Complementarity, Equilibrium, Efficiency and Economics ,(2002)
Donald H Hyers, George Isac, Themistocles M Rassias, Topics in Nonlinear Analysis and Applications ,(1997)
Anthony L. Peressini, Ordered topological vector spaces Harper & Row. ,(1967)
Frank H. Clarke, Optimization and nonsmooth analysis ,(1983)
Boris S. Mordukhovich, Yongheng Shao, Nonsmooth sequential analysis in Asplund spaces Transactions of the American Mathematical Society. ,vol. 348, pp. 1235- 1280 ,(1996) , 10.1090/S0002-9947-96-01543-7