Multiobective motion planning for a nonholonic vehicle

作者: V.A. Spais , L.P. Petrou

DOI: 10.1109/CEC.2003.1299926

关键词:

摘要: A technique is proposed for integrating a probabilistic graph construction algorithm with an evolutionary multiobjective optimizer. hybrid planner (EvoVBPR) nonholonic robotic vehicle presented. It integrates roadmap method (VBPR) the SPEA2 and additional deterministic pruning step. The result Pareto set of roadmaps that represent different tradeoffs between length path obstacle clearance.

参考文章(16)
Jean-Claude Latombe, Robot Motion Planning ,(1990)
P. Švestka, M. H. Overmars, Probabilistic path planning Springer, Berlin, Heidelberg. pp. 255- 304 ,(1998) , 10.1007/BFB0036074
David A. Van Veldhuizen, Gary B. Lamont, Evolutionary algorithms for solving multi-objective problems ,(2002)
Eckart Zitzler, Marco Laumanns, Lothar Thiele, SPEA2: Improving the strength pareto evolutionary algorithm Technical Report, Gloriastrasse 35. ,vol. 103, ,(2001) , 10.3929/ETHZ-A-004284029
C. Nissoux, T. Simeon, J.-P. Laumond, Visibility based probabilistic roadmaps intelligent robots and systems. ,vol. 3, pp. 1316- 1321 ,(1999) , 10.1109/IROS.1999.811662
James Reeds, Lawrence Shepp, Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics. ,vol. 145, pp. 367- 393 ,(1990) , 10.2140/PJM.1990.145.367
Joshua D. Knowles, David W. Corne, Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy Evolutionary Computation. ,vol. 8, pp. 149- 172 ,(2000) , 10.1162/106365600568167