摘要: Foreword. Preface. Contributors. PART I STRUCTURE OF THE BIOEVERGY BUSINESS. 1 Characteristics of Biofuels and Renewable Fuel Standards ( Alan C. Hansen, Dimitrios Kyritsis, Chia fon F. Lee ). 1.1 Introduction. 1.2 Molecular Structure. 1.3 Physical Properties. 1.4 Chemical 1.5 Biofuel Standards. 1.6 Perspective. References. 2 The Global Demand for Biofuels: Technologies, Markets Policies (Jurgen Scheffran). 2.1 2.2 Motivation Potential Fuels. 2.3 Fuels in the Transportation Sector. 2.4 Status Major Biofuels. 2.5 Selected Countries. 2.6 3 Realization Stephen R. Hughes Nasib Qureshi 3.1 3.2 Availability Resources to Realize Demand. 3.3 Technology Improvements Enhance Production Economics. 3.4 US Regulatory Requirements Organisms Engineered Meet 3.5 Acknowledgments. 4 Advanced Biorefineries Ethanol Hughes, William Gibbons, Scott Kohl 4.1 4.2 Plants Using Sugar Feedstocks. 4.3 Dedicated Dry-Grind Dry-Mill Starch Plants. 4.4 Wet-Mill 4.5 Cellulosic 4.6 Combined Biorefineries. 4.7 II DIESEL FROM BIOMASS. 5 Biomass Liquefaction Gasification Nicolaus Dahmen, Edmund Henrich, Andrea Kruse, Klaus Raffelt 5.1 5.2 Direct Liquefaction. 5.3 Biosynfuels from Biosyngas. 5.4 6 Diesel Syngas Yong-Wang Li, Jian Xu, Yong Yang 6.1 6.2 Overview Fischer-Tropsch Synthesis. 6.3 Historical Development Synthesis Process. 6.4 Modern Processes. 6.5 6.6 Acknowledgements. 7 Biodiesel Vegetable Oils Jon Van Gerpen 7.1 7.2 Use as 7.3 Diesel. 7.4 7.5 Production. 7.6 Transesteritication. 7.7 Purification. 7.8 8 Microalgae Seaweeds Michael Huesemann, G. Roesjadi, John Benemann, Blaine Metting 8.1 8.2 Microalgae: Products, Processes, Limitations. 8.3 Seaweeds: 8.4 III ETHANOL AND BUTANOL. 9 Corn Saccharomyces cerevisiae Vijay Singh, David B. Johnston, Kent D. Rausch, M.E. Tumbleson 9.1 9.2 Current Industrial Technology. 9.3 Granular Hydrolysis. 9.4 Fractionation. 9.5 Simultaneous SSF Distillation. 9.6 Dynamic Control 9.7 Cost Ethanol. 9.8 10 Technologies Hydrolysis Saccharification Novel Enzymes Margret E. Berg Miller, Jennifer M. Brulc, Edward A. Bayer, Raphael Lamed, Harry J. Flint, Bryan White 10.1 10.2 Substrate. 10.3 Glycosyl Hydrolases. 10.4 Cellulosome Concept. 10.5 New Approaches Identification Glycoside 10.6 11 Mass Balances Analytical Methods Pretreatment Experiments Bruce S. Dien 11.1 11.2 Analysis Feedstocks Composition Yield. 11.3 Pretreatment. 11.4 Enzymatic Extraction Sugars. 11.5 Fermentation Pretreated Hydrolysates 11.6 Feedstock Process Integration. 11.7 12 Conversion Inhibitors In Situ Detoxification Z. Lewis Liu Hans P. Blaschek 12.1 12.2 Inhibitory Compounds Derived 12.3 Effects. 12.4 Removal Inhibitors. 12.5 Inhibitor-Tolerant Strain Development. 12.6 Inhibitor Pathways. 12.7 Mechanisms Detoxification. 12.8 13 From Lignocellulosic Raw Materials Recombinant Yeasts Grant Stanley Barbel Hahn-Hagerdal 13.1 13.2 Consolidated Bioprocessing 13.3 Pentose-Fermenting Strains. 13.4 Lignocellulose Inhibition. 13.5 14 by Other Siqing 14.1 14.2 Desired Biocatalysts Bioethanol. 14.3 Gram-Negative Bacteria. 14.4 Gram-Positive 14.5 15 Masayuki Inui, Alain Vertes Hideaki Yukawa 15.1 15.2 Batch 15.3 Fed-Batch 15.4 Continuous 15.5 Immobilized Cell Systems. 15.6 Growth-Arrested 15.7 Integrated Bioprocesses. 15.8 (CBP). 15.9 16 Product Recovery Thaddeus C Ezeji Yebo Li 16.1 16.2 Membrane Separation. 16.3 Recovery: Industrially Relevant 16.4 17 Clostridia Engineering Energy Generation 17.1 17.2 Substrates, Cultures, Traditional Technologies. 17.3 Agricultural Residues Substrates Future. 17.4 Butanol-Producing Microbial Cultures. 17.5 Regulation Butanol Genetics. 17.6 17.7 17.8 17.9 or 17.10 IV: HYDROGEN, METHANE, METHANOL. 18 Hydrogen Cultures Anja Hemschemeier, Katrin Mullner, Thilo Ruhle, Thomas Happe 18.1. Introduction: Why Biological Production? 18.2. 18.3. Metabolic Basics Production: Photosynthesis. 18.4. H Application: Cases Point. 18.5. 19 Photosynthesis O: Cyanobacteria Design Nadine Waschewski, Gabor Bernat, Matthias Rogner 19.1 Basic Idea: Water? 19.2 Realization: Three Mutually Supporting Strategies. 19.3 Strategy: How a Hydrogen-Producing (Cyano-) Bacterial Cell. 19.4 Environment Cells: Reactor Design. 19.5 Much Can We Expect? Limit Natural 19.6 20 Utilization Methane Biogas Zhongtang Yu, Mark Morrison, Floyd L. Schanbacher 20.1 20.2 Microbes Metabolisms Underpinning Biomethanation. 20.3 Used 20.4 Biomethanation Biogas. 20.5 Fuel. 20.6 20.7 Concluding Remarks. 20.8 Disclaimer. 21 Methanol Gregory Dolan 21.1 21.2 Gasification: Mature Immature. 21.3 Feedstocks: Diverse Plentiful. 21.4 Biomethanol: ICEs, FFVs, FCVs. 21.5 Case Study: Waste Wood Biorefinery. 21.6 Two-Step Thermochemical 21.7 Mobile Machine. 21.8 Scandinavia Leading Way with Black Liquor 21.9 through Anaerobic Digestion. V PERSPECTIVES. 22 Enhancing Primary Takahisa Hayashi, Rumi Kaida, Nobutaka Mitsuda, Masaru Ohme-Takagi, Nobuyuki Nishikuba, Shin-ichiro Kidou, Kouki Yoshida 22.1 22.2 In-Fibril Modification. 22.3 In-Wall Modifications. 22.4 In-Planta 22.5 In-CRES-T 22.6 A Catalogue Gene Families Glycan Synthases 22.7 23 Axes Converting 23.1 Outlook. 23.2 Enhancement Material Biomass. 23.3 Chemicals. 23.4 23.5 24 Financing Strategies Industrial-Scale Start-Ups Sarit Soccary Ben Yochanan 24.1 Background: Financial Environment. 24.2 Project: Steps Value Creation Required Funding at Each Stage. 24.3 Governmental Incentives Support Nascent Biomaterial Industry. 24.4 Perspective: What is Best Source Step Company's Development? Index.