Transformations of hypergeometric elliptic integrals

作者: Raimundas Vidunas

DOI:

关键词:

摘要: The paper classifies algebraic transformations of Gauss hypergeometric functions with the local exponent differences $(1/2,1/4,1/4)$, $(1/2,1/3,1/6)$ and $(1/3,1/3,1/3)$. These form a special class functions, arbitrary high degree. can be identified as elliptic integrals on genus 1 curves $y=x^3-x$ or $y=x^3-1$. Especially interesting are into themselves; these come from isogenies respective curves.

参考文章(4)
Raimundas Vidūnas, Transformations of some Gauss hypergeometric functions Journal of Computational and Applied Mathematics. ,vol. 178, pp. 473- 487 ,(2005) , 10.1016/J.CAM.2004.09.053
Raimundas Vidunas, Degenerate Gauss hypergeometric functions Kyushu Journal of Mathematics. ,vol. 61, pp. 109- 135 ,(2007) , 10.2206/KYUSHUJM.61.109