Modeling Long-term Outcomes and Treatment Effects After Androgen Deprivation Therapy for Prostate Cancer

作者: Yolanda Hagar , James J. Dignam , Vanja Dukic

DOI:

关键词:

摘要: Analyzing outcomes in long-term cancer survivor studies can be complex. The effects of predictors on the failure process may difficult to assess over longer periods time, as commonly used assumption proportionality hazards holding an extended period is often questionable. In this manuscript, we compare seven different survival models that estimate hazard rate and proportional non-proportional covariates. particular, focus extension multi-resolution (MRH) estimator, combining a hierarchical MRH approach with data-driven pruning algorithm allows for computational efficiency produces robust estimates even times few observed failures. Using data from large-scale randomized prostate clinical trial, examine patterns biochemical time-varying androgen deprivation therapy treatment other We impact modeling strategies smoothness assumptions estimated effect. Our results show benefits diminish possibly implications future protocols.

参考文章(57)
Daniel J. Sargent, A Flexible Approach to Time-varying Coefficients in the Cox Regression Setting Lifetime Data Analysis. ,vol. 3, pp. 13- 25 ,(1997) , 10.1023/A:1009612117342
Michael K. Brawer, Michael P. Chetner, Jeanette Beatie, David M. Buchner, Robert L. Vessella, Paul H. Lange, Screening for Prostatic Carcinoma with Prostate Specific Antigen The Journal of Urology. ,vol. 147, pp. 841- 845 ,(1992) , 10.1016/S0022-5347(17)37401-3
David R. Cox, Regression Models and Life-Tables Springer Series in Statistics. ,vol. 34, pp. 527- 541 ,(1992) , 10.1007/978-1-4612-4380-9_37
Yolanda Hagar, David Albers, Rimma Pivovarov, Herbert Chase, Vanja Dukic, Noémie Elhadad, Survival Analysis with Electronic Health Record Data: Experiments with Chronic Kidney Disease. Statistical Analysis and Data Mining. ,vol. 7, pp. 385- 403 ,(2014) , 10.1002/SAM.11236
F. Schröder, E.D. Crawford, K. Axcrona, H. Payne, T.E. Keane, Androgen deprivation therapy: past, present and future. BJUI. ,vol. 109, pp. 1- 12 ,(2012) , 10.1111/J.1464-410X.2012.11215.X
PATRICIA M. GRAMBSCH, TERRY M. THERNEAU, Proportional hazards tests and diagnostics based on weighted residuals Biometrika. ,vol. 81, pp. 515- 526 ,(1994) , 10.1093/BIOMET/81.3.515
Maria De Iorio, Wesley O. Johnson, Peter Müller, Gary L. Rosner, Bayesian nonparametric nonproportional hazards survival modeling. Biometrics. ,vol. 65, pp. 762- 771 ,(2009) , 10.1111/J.1541-0420.2008.01166.X
Maria De Iorio, Peter Müller, Gary L Rosner, Steven N MacEachern, An ANOVA model for dependent random measures Journal of the American Statistical Association. ,vol. 99, pp. 205- 215 ,(2004) , 10.1198/016214504000000205
William H. Cooner, B.R. Mosley, Charles L. Rutherford, Jeff H. Beard, Harry S. Pond, William J. Terry, Todd C. Igel, Donald D. Kidd, Prostate cancer detection in a clinical urological practice by ultrasonography, digital rectal examination and prostate specific antigen The Journal of Urology. ,vol. 143, pp. 1146- 1152 ,(1990) , 10.1016/S0022-5347(17)40211-4
Luis E. Nieto-Barajas, Bayesian semiparametric analysis of short- and long-term hazard ratios with covariates Computational Statistics & Data Analysis. ,vol. 71, pp. 477- 490 ,(2014) , 10.1016/J.CSDA.2013.03.012