Stability analysis of distributed-order nonlinear dynamic systems

作者: Hamed Taghavian , Mohammad Saleh Tavazoei

DOI: 10.1080/00207721.2017.1412535

关键词:

摘要: … An extension of this theorem for fractional-order systems was presented by Li, Chen, and Podlubny (… stable equilibrium point (see the sample simulation results presented in Figure 1). …

参考文章(54)
Endre Süli, David F. Mayers, An Introduction to Numerical Analysis Cambridge University Press. ,(2003) , 10.1017/CBO9780511801181
Guang-hua Gao, Hai-wei Sun, Zhi-zhong Sun, Some high-order difference schemes for the distributed-order differential equations Journal of Computational Physics. ,vol. 298, pp. 337- 359 ,(2015) , 10.1016/J.JCP.2015.05.047
Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, Lennart Ljung, None, Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint Automatica. ,vol. 69, pp. 137- 149 ,(2016) , 10.1016/J.AUTOMATICA.2016.02.012
Gang Zheng, Francisco Javier Bejarano, Wilfrid Perruquetti, Jean-Pierre Richard, Unknown input observer for linear time-delay systems Automatica. ,vol. 61, pp. 35- 43 ,(2015) , 10.1016/J.AUTOMATICA.2015.07.029
Ying Yang, Guopei Chen, Finite‐time stability of fractional order impulsive switched systems International Journal of Robust and Nonlinear Control. ,vol. 25, pp. 2207- 2222 ,(2015) , 10.1002/RNC.3202
K.J. Latawiec, R. Stanisławski, Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability Bulletin of The Polish Academy of Sciences-technical Sciences. ,vol. 61, pp. 353- 361 ,(2013) , 10.2478/BPASTS-2013-0034
Liping Chen, Yigang He, Yi Chai, Ranchao Wu, New results on stability and stabilization of a class of nonlinear fractional-order systems Nonlinear Dynamics. ,vol. 75, pp. 633- 641 ,(2014) , 10.1007/S11071-013-1091-5
Joseph Abate, Ward Whitt, A Unified Framework for Numerically Inverting Laplace Transforms Informs Journal on Computing. ,vol. 18, pp. 408- 421 ,(2006) , 10.1287/IJOC.1050.0137