Linearizable initial boundary value problems for the sine-Gordon equation on the half-line

作者: A S Fokas

DOI: 10.1088/0951-7715/17/4/020

关键词:

摘要: A rigorous methodology for the analysis of initial boundary value problems on half-line, 0 0, integrable nonlinear evolution PDEs has recently appeared in literature. As an application this solution q(x, t) sine-Gordon equation can be obtained terms a 2 × matrix Riemann–Hilbert problem. This problem is formulated complex k-plane and uniquely defined so-called spectral functions a(k), b(k), B(k)/A(k). The a(k) b(k) constructed given conditions 0) qt(x, via system two linear ODEs, while arbitrary A(k) B(k) condition four ODEs. In paper, we analyse particular conditions: case constant Dirichlet data, q(0, = χ, as well when qx(0, t), sin (q(0, t)/2), cos(q(0, t)/2) are linearly related by constants χ1 χ2. We show that these cases, above ODEs avoided, B(k)/A(k) computed explicitly { χ} {a(k), χ1, χ2}, respectively. Thus, 'linearizable' solved with absolutely same level efficiency classical line.

参考文章(29)
A. S. Fokas, S. Kamvissis, Zero-dispersion limit for integrable equations on the half-line with linearisable data Abstract and Applied Analysis. ,vol. 2004, pp. 361- 370 ,(2004) , 10.1155/S1085337504306093
A. S. Fokas, A. R. Its, An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates Theoretical and Mathematical Physics. ,vol. 92, pp. 964- 978 ,(1992) , 10.1007/BF01017074
E K Sklyanin, Boundary conditions for integrable quantum systems Journal of Physics A. ,vol. 21, pp. 2375- 2389 ,(1988) , 10.1088/0305-4470/21/10/015
R.H. Rietdijk, R. Sasaki, P.E. Dorey, E. Corrigan, Affine Toda field theory on a half-line Physics Letters B. ,vol. 333, pp. 83- 91 ,(1994) , 10.1016/0370-2693(94)91011-1
P. Bowcock, R.H. Rietdijk, P.E. Dorey, E. Corrigan, Classically integrable boundary conditions for affine Toda field theories Nuclear Physics. ,vol. 445, pp. 469- 500 ,(1995) , 10.1016/0550-3213(95)00153-J
A. S. Fokas, The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs Communications on Pure and Applied Mathematics. ,vol. 58, pp. 639- 670 ,(2005) , 10.1002/CPA.20076
Stanislav Spichak, Symmetry Approach in Boundary Value Problems Journal of Nonlinear Mathematical Physics. ,vol. 3, pp. 147- 151 ,(1996) , 10.2991/JNMP.1996.3.1-2.16
Fudong Wang, Wen-Xiu Ma, A steepest descent method for oscillatory Riemann-Hilbert problems Bulletin of the American Mathematical Society. ,vol. 26, pp. 119- 123 ,(1992) , 10.1090/S0273-0979-1992-00253-7