The effect of bridging on fatigue crack growth behavior in Aramid Patched Aluminum Alloy(APAL)

作者: S. W. Oh , W. J. Park , C. W. Hue , H. K. Yoon , K. B. Lee

DOI: 10.1007/BF02944710

关键词:

摘要: A new hybrid composite (APAL: Aramid Patched Aluminum Alloy), consisting of a 2024-T3 aluminum alloy plate sandwiched between two aramid/epoxy laminate (HK 285/RS 1222), was developed. Fatigue crack growth behavior examined at stress ratios R=0.2, 0.5 using the and kinds APAL with different fiber orientation (0°/90° 45° for direction). The showed superior fatigue resistance, which may be attributed to bridging effect imposed by intact fibers in wake. magnitude estimated quantitatively determined technique on basis compliances specimens. rates specimens were reduced significantly as comparison monolithic not adequately correlated conventional intensity factor range(ΔK). It found that rate successfully effective range (ΔK eff =K br -K ct ) allowing closure bridging. relation da/dN theΔK plotted within narrow scatter band regardless kind ratio (R=0.2, 0.5) material (2024-T3 alloy, 0°/90° APAL±45°). result equation follow:da/dN=6.45×10−7(ΔK )2.4.

参考文章(13)
R.O. Ritchie, CRACK TIP SHIELDING IN FATIGUE Mechanical Behaviour of Materials V#R##N#Proceedings of the Fifth International Conference, Beijing, China, 3–6 June 1987. pp. 1399- 1417 ,(1988) , 10.1016/B978-0-08-034912-1.50185-5
Ǒmer.G. Bilir, Metin Harun, Effect of stress ratio on the rate of growth of fatigue cracks in 1100 Al-alloy Engineering Fracture Mechanics. ,vol. 37, pp. 1203- 1206 ,(1990) , 10.1016/0013-7944(90)90062-L
C.Michael Hudson, Joseph T. Scardina, Effect of stress ratio on fatigue-crack growth in 7075-T6 aluminum-alloy sheet Engineering Fracture Mechanics. ,vol. 1, pp. 429- 446 ,(1969) , 10.1016/0013-7944(69)90003-4
C.T. Lin, P.W. Kao, F.S. Yang, Fatigue behaviour of carbon fibre-reinforced aluminium laminates Composites. ,vol. 22, pp. 135- 141 ,(1991) , 10.1016/0010-4361(91)90672-4
R. Marissen, Flight simulation behaviour of aramid reinforced aluminium laminates (ARALL) Engineering Fracture Mechanics. ,vol. 19, pp. 261- 277 ,(1984) , 10.1016/0013-7944(84)90021-3
Ryoichi KOTERAZAWA, Masayoshi NOSE, Masamichi KAWAI, Masaki HOJO, Kazuyoshi ARAMAKI, Fatigue Crack Growth and Fatigue Damage Development in Fiber Reinforced Composites under Variable Amplitude Stresses Journal of The Society of Materials Science, Japan. ,vol. 42, pp. 46- 51 ,(1993) , 10.2472/JSMS.42.46
R.O Ritchie, Weikang Yu, R.J Bucci, Fatigue crack propagation in ARALL® LAMINATES: Measurement of the effect of crack-tip shielding from crack bridging Engineering Fracture Mechanics. ,vol. 32, pp. 361- 377 ,(1989) , 10.1016/0013-7944(89)90309-3
L.B. Vogelesang, J.W. Gunnink, ARALL: A materials challenge for the next generation of aircraft Materials & Design. ,vol. 7, pp. 287- 300 ,(1986) , 10.1016/0261-3069(86)90098-1
D. L. Davidson1, L. K. Austin2, FATIGUE CRACK GROWTH THROUGH ARALL‐4 AT AMBIENT TEMPERATURE Fatigue & Fracture of Engineering Materials & Structures. ,vol. 14, pp. 939- 951 ,(1991) , 10.1111/J.1460-2695.1991.TB00004.X