Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish

作者: Thomas Desvignes , H. William Detrich , John H. Postlethwait

DOI: 10.1016/J.MARGEN.2016.04.013

关键词:

摘要: White-blooded Antarctic crocodile icefish are the only vertebrates known to lack functional hemoglobin genes and red blood cells throughout their lives. We do not yet know, however, whether extinction of preceded loss or vice versa, nor erythropoiesis regulators disappeared along with in this erythrocyte-null clade. Several microRNAs, which we here call erythromiRs, expressed primarily developing zebrafish, mouse, humans. Abrogating some like mir144 mir451a, leads profound anemia, demonstrating a role erythropoiesis. Here, tested two mutually exclusive hypotheses: 1) that one more erythromiR extinguished erythropoietic program and/or led globin gene expression through pseudogenization; 2) were secondarily lost after icefish. explored small RNA transcriptomes generated from hematopoietic kidney marrow four notothenioids: red-blooded species (bullhead notothen Notothenia coriiceps emerald Trematomus bernacchii) white-blooded (blackfin Chaenocephalus aceratus hooknose Chionodraco hamatus). The N. genome assembly anchored analyses. Results showed that, species, blackfin possessed all erythromiRs. This result indicates was caused by genes. Furthermore, erythromiR, mir96, appears have been hemoglobin-expression detected organ but present All other erythromiRs investigated, including thus genomes at least Our results rule out hypothesis genomic any icefish, suggest cells, few experienced secondary loss. functions independent maintained thereby highlighting evolutionary resilience miRNA vertebrate genomes.

参考文章(85)
Kenneth S. Kosik, MicroRNAs and Cellular Phenotypy Cell. ,vol. 143, pp. 21- 26 ,(2010) , 10.1016/J.CELL.2010.09.008
Thomas Desvignes, Michael J. Beam, Peter Batzel, Jason Sydes, John H. Postlethwait, Expanding the annotation of zebrafish microRNAs based on small RNA sequencing Gene. ,vol. 546, pp. 386- 389 ,(2014) , 10.1016/J.GENE.2014.05.036
Foteini Christodoulou, Florian Raible, Raju Tomer, Oleg Simakov, Kalliopi Trachana, Sebastian Klaus, Heidi Snyman, Gregory J. Hannon, Peer Bork, Detlev Arendt, Ancient animal microRNAs and the evolution of tissue identity Nature. ,vol. 463, pp. 1084- 1088 ,(2010) , 10.1038/NATURE08744
Haijun Zhang, Benjamin Shykind, Tao Sun, Approaches to manipulating microRNAs in neurogenesis Frontiers in Neuroscience. ,vol. 6, pp. 196- 196 ,(2013) , 10.3389/FNINS.2012.00196
C.-H Christina Cheng, H William Detrich, Molecular Ecophysiology of Antarctic Notothenioid Fishes Philosophical Transactions of the Royal Society B. ,vol. 362, pp. 2215- 2232 ,(2007) , 10.1098/RSTB.2006.1946
Violaine Havelange, Ramiro Garzon, Micrornas: Emerging key regulators of hematopoiesis. American Journal of Hematology. ,vol. 85, pp. 935- 942 ,(2010) , 10.1002/AJH.21863
Sihem Cheloufi, Camila O. Dos Santos, Mark M. W. Chong, Gregory J. Hannon, A dicer-independent miRNA biogenesis pathway that requires Ago catalysis Nature. ,vol. 465, pp. 584- 589 ,(2010) , 10.1038/NATURE09092
Malgorzata Witeska, Erythrocytes in teleost fishes: a review Zoology and ecology. ,vol. 23, pp. 275- 281 ,(2013) , 10.1080/21658005.2013.846963
Jennifer Rhodes, Andreas Hagen, Karl Hsu, Min Deng, Ting Xi Liu, A.Thomas Look, John P. Kanki, Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Developmental Cell. ,vol. 8, pp. 97- 108 ,(2005) , 10.1016/J.DEVCEL.2004.11.014