Shock metamorphism and petrography of the Shergotty achondrite

作者: D Stöffler , R Ostertag , C Jammes , G Pfannschmidt , P.R.Sen Gupta

DOI: 10.1016/0016-7037(86)90371-6

关键词:

摘要: The Shergotty subsamples 1 and 12 consist of augite pigeonite (67.5%), maskelynite (24%), ilmenite titanomagnetite (2%), pyrrhotite (0.4%), whitlockite (1.8%), apatite (0.1%), quartz (0.5%), baddeleyite (trace), fayalite mesostasis (3%), shock-induced local, polymineralic melt products (0.6%). overall modal composition is similar to other samples except for the rather high content. shock effects observed in mineral constituents include mosaicism, deformation bands, planar fractures, mechanical twin lamellae clinopyroxene; isotropization plagioclase with very rare remnants birefringence; structures, strongly reduced birefringence quartz; twinning ilmenite; localized situ melting neighbouring minerals at contact low density phases. Based on refractive index (average: 1.5467 average An-content 49%) degree an equilibrium pressure 29 ± GPa derived. inferred post-shock temperature 200 20°C. No heating event could have exceeded 400°C (DUKE, 1968). Local stress concentrations reach 60–80 1600–2000°C. can be explained by a single event. A second, weaker as found others appears highly improbable. Equilibrium pressures temperatures known shergottites are 31 ±2 220 50°C (Zagami), 43 2 400–800°C (ALHA 77005). estimate EETA 79001 Lambert (1985) confirmed: 34 GPa; 250 50°C. abundance textural setting these meteorites confirm increasing sequence Shergotty, Zagami, 79001, ALHA 77005. Undoubtedly, melts been formed same which produced (e.g. maskelynitization) meteorites. particle velocities from Hugoniot data basalts 1.5–2.0 km/s range parental rocks shergottites. Ejection therefore order 3–4 km/s. Special ejection mechanisms required exceed escape velocity planet like Mars without producing higher degrees melting) than those

参考文章(59)
W. v. Engelhardt, W. Bertsch, Shock induced planar deformation structures in quartz from the Ries crater, Germany Contributions to Mineralogy and Petrology. ,vol. 20, pp. 203- 234 ,(1969) , 10.1007/BF00377477
A. V. Anan'in, O. N. Breusov, A. N. Dremin, S. V. Pershin, V. F. Tatsii, The effect of shock waves on silicon dioxide. I. Quartz Combustion, Explosion, and Shock Waves. ,vol. 10, pp. 372- 379 ,(1974) , 10.1007/BF01463769
D. E. Grady, Shock deformation of brittle solids Journal of Geophysical Research. ,vol. 85, pp. 913- 924 ,(1980) , 10.1029/JB085IB02P00913
Harry Y. McSween, Eugene Jarosewich, Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body Geochimica et Cosmochimica Acta. ,vol. 47, pp. 1501- 1513 ,(1983) , 10.1016/0016-7037(83)90309-5
D. J. Milton, P. S. de Carli, Maskelynite: Formation by explosive shock Science. ,vol. 140, pp. 670- 671 ,(1963) , 10.1126/SCIENCE.140.3567.670
Edward Stolper, Trace elements in shergottite meteorites: Implications for the origins of planets Earth and Planetary Science Letters. ,vol. 42, pp. 239- 242 ,(1979) , 10.1016/0012-821X(79)90030-X
J. J. BISHOP, F. A. COTTON, R. EISS, R. P. HUGEL, Trimerization of a Bis-(β-ketophosphonyl)-Metal Complex involving Recyclizations Nature. ,vol. 214, pp. 1111- 1111 ,(1967) , 10.1038/2141111A0
L. E. Nyquist, Do oblique impacts produce Martian meteorites? Journal of Geophysical Research. ,vol. 88, pp. A785- 603 ,(1983) , 10.1029/JB088IS02P0A785
D. Stöffler, Glasses formed by hypervelocity impact Journal of Non-Crystalline Solids. ,vol. 67, pp. 465- 502 ,(1984) , 10.1016/0022-3093(84)90171-6
L. E. Nyquist, The oblique impact hypothesis and relative probabilities of lunar and Martian meteorites Journal of Geophysical Research. ,vol. 89, pp. 574- 575 ,(1984) , 10.1029/JB089IS02P0B631