Naive Bayes Classification of Uncertain Data

作者: Jiangtao Ren , Sau Dan Lee , Xianlu Chen , Ben Kao , Reynold Cheng

DOI: 10.1109/ICDM.2009.90

关键词:

摘要: Traditional machine learning algorithms assume that data are exact or precise. However, this assumption may not hold in some situations because of data uncertainty arising from …

参考文章(16)
Philip S. Yu, Charu C. Aggarwal, Outlier detection with uncertain data siam international conference on data mining. pp. 483- 493 ,(2008)
H. Kriegel, M. Pfeifle, Hierarchical density-based clustering of uncertain data international conference on data mining. pp. 689- 692 ,(2005) , 10.1109/ICDM.2005.75
Qin Zhang, Feifei Li, Ke Yi, Finding frequent items in probabilistic data Proceedings of the 2008 ACM SIGMOD international conference on Management of data - SIGMOD '08. pp. 819- 832 ,(2008) , 10.1145/1376616.1376698
Smith Tsang, Ben Kao, Kevin Y. Yip, Wai-Shing Ho, Sau Dan Lee, Decision Trees for Uncertain Data 2009 IEEE 25th International Conference on Data Engineering. pp. 441- 444 ,(2009) , 10.1109/ICDE.2009.26
Charu C. Aggarwal, On High Dimensional Projected Clustering of Uncertain Data Streams 2009 IEEE 25th International Conference on Data Engineering. pp. 1152- 1154 ,(2009) , 10.1109/ICDE.2009.188
Jinbo Bi, Tong Zhang, Support Vector Classification with Input Data Uncertainty neural information processing systems. ,vol. 17, pp. 161- 168 ,(2004)
Charu C. Aggarwal, On Density Based Transforms for Uncertain Data Mining international conference on data engineering. pp. 866- 875 ,(2007) , 10.1109/ICDE.2007.367932
Graham Cormode, Andrew McGregor, Approximation algorithms for clustering uncertain data Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems - PODS '08. pp. 191- 200 ,(2008) , 10.1145/1376916.1376944
B.W. Silverman, Density estimation for statistics and data analysis Monographs on Statistics and Applied Probability. ,(1986) , 10.1201/9781315140919
Sau Dan Lee, Ben Kao, Reynold Cheng, Reducing UK-Means to K-Means international conference on data mining. pp. 483- 488 ,(2007) , 10.1109/ICDMW.2007.81