Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants.

作者: Brad J. Farrell , Boris I. Prilutsky , Jana M. Ritter , Sean Kelley , Ketul Popat

DOI: 10.1002/JBM.A.34807

关键词:

摘要: The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects pore size (Small, 40-100 μm and Large, 100-160 μm), nanotubular surface treatment (Nano), duration implantation (3 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in back 35 rats randomly assigned to seven groups. Implant extrusion rate measured weekly determined histologically after harvesting implants. It found that all three types demonstrated tissue over 30% (at week 3) 50% weeks 4-6) total area under skin; longer resulted greater (p < 0.05). Only one case infection observed (infection 2.9%). Small Nano groups showed same lower than Large group (0.06 ± 0.01 vs. 0.16 0.02 cm/week; p Ingrowth comparable Small, However, qualitatively, greatest cellular inhabitation within first 3 weeks. We concluded titanium allow for integration with potential a safe seal.

参考文章(38)
Rickard Brånemark, Kerstin Hagberg, One hundred patients treated with osseointegrated transfemoral amputation prostheses--rehabilitation perspective. Journal of Rehabilitation Research and Development. ,vol. 46, pp. 331- 344 ,(2009)
Mark Pitkin, Grigory Raykhtsaum, John Pilling, Yuri Shukeylo, Vladimir Moxson, Volodimir Duz, John Lewandowski, Raymond Connolly, Robert S. Kistenberg, John F. Dalton, Boris Prilutsky, Stewart Jacobson, Mathematical modeling and mechanical and histopathological testing of porous prosthetic pylon for direct skeletal attachment Journal of Rehabilitation Research and Development. ,vol. 46, pp. 315- 330 ,(2009) , 10.1682/JRRD.2008.09.0123
Mark Pitkin, Grigory Raykhtsaum, Oleg V. Galibin, Mikhail V. Protasov, Julie V. Chihovskaya, Irina G. Belyaeva, Skin and bone integrated prosthetic pylon: a pilot animal study. Journal of Rehabilitation Research and Development. ,vol. 43, pp. 573- 580 ,(2006) , 10.1682/JRRD.2005.05.0160
D.S. Feldman, A.F. von Recum, Non-epidermally induced failure modes of percutaneous devices Biomaterials. ,vol. 6, pp. 352- 356 ,(1985) , 10.1016/0142-9612(85)90091-2
Sabrina D. Puckett, Phin Peng Lee, Deborah M. Ciombor, Roy K. Aaron, Thomas J. Webster, Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. Acta Biomaterialia. ,vol. 6, pp. 2352- 2362 ,(2010) , 10.1016/J.ACTBIO.2009.12.016
A. Tjellström, J. Lindström, O. Hallén, T. Albrektsson, P-I. Brånemark, Direct bone anchorage of external hearing aids Journal of Biomedical Engineering. ,vol. 5, pp. 59- 63 ,(1983) , 10.1016/0141-5425(83)90080-8
Timothy Ruckh, Joshua R Porter, Nageh K Allam, Xinjian Feng, Craig A Grimes, Ketul C Popat, Nanostructured tantala as a template for enhanced osseointegration. Nanotechnology. ,vol. 20, pp. 045102- 045102 ,(2009) , 10.1088/0957-4484/20/4/045102
Teri G. Rosenbaum Chou, Cathy A. Petti, Juliana Szakacs, Roy D. Bloebaum, Evaluating antimicrobials and implant materials for infection prevention around transcutaneous osseointegrated implants in a rabbit model. Journal of Biomedical Materials Research Part A. ,vol. 92, pp. 942- 952 ,(2009) , 10.1002/JBM.A.32413
J. D. Bobyn, G. J. Wilson, D. C. MacGregor, R. M. Pilliar, G. C. Weatherly, Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants. Journal of Biomedical Materials Research. ,vol. 16, pp. 571- 584 ,(1982) , 10.1002/JBM.820160505
Gil Stynes, George K Kiroff, Wayne A. J. Morrison, Mark A Kirkland, TISSUE COMPATIBILITY OF BIOMATERIALS: BENEFITS AND PROBLEMS OF SKIN BIOINTEGRATION Anz Journal of Surgery. ,vol. 78, pp. 654- 659 ,(2008) , 10.1111/J.1445-2197.2008.04609.X