Modeling and analyzing cholera transmission dynamics with vaccination age

作者: Liming Cai , Gaoxu Fan , Chayu Yang , Jin Wang

DOI: 10.1016/J.JFRANKLIN.2020.05.030

关键词:

摘要: Abstract A new mathematical model is formulated to investigate the transmission dynamics of cholera under vaccination, with a focus on impact vaccination age. The basic reproduction number derived and proved be sharp control threshold determining whether or not infection persistent. We conduct rigorous analysis local global stability properties equilibria in system. Meanwhile, we compare results those simplified based ordinary differential equations where effects age are incorporated. Numerical simulation verify our analytical findings.

参考文章(48)
Mohammad Ali, Allyson R Nelson, Anna Lena Lopez, David A Sack, None, Updated global burden of cholera in endemic countries. PLOS Neglected Tropical Diseases. ,vol. 9, ,(2015) , 10.1371/JOURNAL.PNTD.0003832
Horst R. Thieme, Hal L. Smith, Dynamical Systems and Population Persistence ,(2010)
Mimmo Iannelli, Mathematical theory of age-structured population dynamics Giardini Editori e Stampatori in Pisa. ,(1995)
Aaron A. King, Edward L. Ionides, Mercedes Pascual, Menno J. Bouma, Inapparent infections and cholera dynamics Nature. ,vol. 454, pp. 877- 880 ,(2008) , 10.1038/NATURE07084
Eric J. Nelson, Jason B. Harris, J. Glenn Morris, Stephen B. Calderwood, Andrew Camilli, Cholera transmission: the host, pathogen and bacteriophage dynamic Nature Reviews Microbiology. ,vol. 7, pp. 693- 702 ,(2009) , 10.1038/NRMICRO2204
Sebastian Aniţa, Vincenzo Capasso, Stabilization of a reaction–diffusion system modelling a class of spatially structured epidemic systems via feedback control Nonlinear Analysis-real World Applications. ,vol. 13, pp. 725- 735 ,(2012) , 10.1016/J.NONRWA.2011.08.012
R. E. Wilson, V. Capasso, Analysis of a Reaction-Diffusion System Modeling Man--Environment--Man Epidemics SIAM Journal on Applied Mathematics. ,vol. 57, pp. 327- 346 ,(1997) , 10.1137/S0036139995284681
Joseph H. Tien, David J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bulletin of Mathematical Biology. ,vol. 72, pp. 1506- 1533 ,(2010) , 10.1007/S11538-010-9507-6
C. Connell McCluskey, Complete global stability for an SIR epidemic model with delay — Distributed or discrete Nonlinear Analysis-real World Applications. ,vol. 11, pp. 55- 59 ,(2010) , 10.1016/J.NONRWA.2008.10.014