Identification of MCI using optimal sparse MAR modeled effective connectivity networks.

作者: Chong-Yaw Wee , Yang Li , Biao Jie , Zi-Wen Peng , Dinggang Shen

DOI: 10.1007/978-3-642-40763-5_40

关键词:

摘要: Capability of detecting causal or effective connectivity from resting-state functional magnetic resonance imaging (R-fMRI) is highly desirable for better understanding the cooperative nature brain. Effective provides specific dynamic temporal information R-fMRI time series and reflects directional influence one brain region over another. These influences among regions are normally extracted based on concept Granger causality. Conventionally, inferred using multivariate autoregressive (MAR) modeling with default model order q = 1, considering low frequency fluctuation series. This assumption, although reduces complexity, does not guarantee best fitting at different regions. Instead order, we propose to estimate optimal upon MAR distribution characterize these each region. Due sparse networks, an orthogonal least square (OLS) regression algorithm incorporated minimize spurious connectivity. networks proposed applied Mild Cognitive Impairment (MCI) identification obtained promising results, demonstrating importance relationships between neurodegeneration disorder identification.

参考文章(19)
Larry R. Squire, The legacy of patient H.M. for neuroscience. Neuron. ,vol. 61, pp. 6- 9 ,(2009) , 10.1016/J.NEURON.2008.12.023
Ga??l Ch??telat, B??atrice Desgranges, Vincent de la Sayette, Fausto Viader, Francis Eustache, Jean-Claude Baron, Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport. ,vol. 13, pp. 1939- 1943 ,(2002) , 10.1097/00001756-200210280-00022
N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, M. Joliot, Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain NeuroImage. ,vol. 15, pp. 273- 289 ,(2002) , 10.1006/NIMG.2001.0978
Susan Whitfield-Gabrieli, Judith M. Ford, Default Mode Network Activity and Connectivity in Psychopathology Annual Review of Clinical Psychology. ,vol. 8, pp. 49- 76 ,(2012) , 10.1146/ANNUREV-CLINPSY-032511-143049
Andrea E. Cavanna, Michael R. Trimble, The precuneus: a review of its functional anatomy and behavioural correlates. Brain. ,vol. 129, pp. 564- 583 ,(2006) , 10.1093/BRAIN/AWL004
Jagath C. Rajapakse, Juan Zhou, Learning effective brain connectivity with dynamic Bayesian networks. NeuroImage. ,vol. 37, pp. 749- 760 ,(2007) , 10.1016/J.NEUROIMAGE.2007.06.003
Rainer Goebel, Alard Roebroeck, Dae-Shik Kim, Elia Formisano, Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging. ,vol. 21, pp. 1251- 1261 ,(2003) , 10.1016/J.MRI.2003.08.026
M. D. Greicius, B. Krasnow, A. L. Reiss, V. Menon, Functional connectivity in the resting brain: A network analysis of the default mode hypothesis Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 253- 258 ,(2003) , 10.1073/PNAS.0135058100