Dafo, a Multi-agent Framework for Decomposable Functions Optimization

作者: Grégoire Danoy , Pascal Bouvry , Olivier Boissier

DOI: 10.1007/11554028_87

关键词:

摘要: This paper introduces Dafo, a new multi-agent framework for evolutionary optimization relying on competitive coevolutionary genetic algorithm, aka LCGA (Loosely Coupled Genetic Algorithm). We describe our solution, discuss of the potential advantages using an agent based approach and present some results real case study: i.e. Inventory Control Parameter (ICP) problem.

参考文章(7)
Franciszek Seredynski, Albert Y. Zomaya, Pascal Bouvry, Function Optimization with Coevolutionary Algorithms intelligent information systems. pp. 13- 22 ,(2003) , 10.1007/978-3-540-36562-4_2
R. Eriksson, B. Olsson, Cooperative Coevolution in Inventory Control Optimisation international conference on adaptive and natural computing algorithms. pp. 583- 587 ,(1998) , 10.1007/978-3-7091-6492-1_129
J. Paredis, Coevolutionary Life-Time Learning parallel problem solving from nature. pp. 72- 80 ,(1996) , 10.1007/3-540-61723-X_971
Mitchell A. Potter, Kenneth A. Jong, A Cooperative Coevolutionary Approach to Function Optimization parallel problem solving from nature. pp. 249- 257 ,(1994) , 10.1007/3-540-58484-6_269
Grégoire Danoy, Pascal Bouvry, Franciszek Seredynski, Agent-Based Optimization of Business Functions Using Coevolutionary Algorithms. IKE. pp. 109- 112 ,(2004)
J. Ferber, O. Gutknecht, A meta-model for the analysis and design of organizations in multi-agent systems international conference on multi agent systems. pp. 128- 135 ,(1998) , 10.1109/ICMAS.1998.699041
Olivier Gutknecht, Jacques Ferber, MadKit: a generic multi-agent platform adaptive agents and multi-agents systems. pp. 78- 79 ,(2000) , 10.1145/336595.337048