Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology

作者: Brittany Salazar , Emily Balczewski , Choong Ung , Shizhen Zhu

DOI: 10.3390/IJMS18010037

关键词:

摘要: Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how initiate, progress, and metastasize early childhood. Also, due limited detected driver mutations, it is difficult benchmark key genes for drug development. In this review, we use neuroblastoma, pediatric solid tumor of neural crest origin, as paradigm exploring “big data” applications oncology. Computational strategies derived from big data science–network- machine learning-based modeling repositioning—hold the promise shedding new light on molecular mechanisms driving neuroblastoma pathogenesis identifying potential therapeutics combat devastating disease. These integrate robust input, genomic transcriptomic studies, clinical data, vivo vitro experimental models specific other types that closely mimic its biological characteristics. We discuss contexts which computational approaches, especially network-based modeling, may advance research, describe currently available resources, propose future strategic collection analyses related diseases.

参考文章(212)
Floor A. M. Duijkers, José Gaal, Jules P. P. Meijerink, Pieter Admiraal, Rob Pieters, Ronald R. de Krijger, Max M. van Noesel, Anaplastic lymphoma kinase (ALK) inhibitor response in neuroblastoma is highly correlated with ALK mutation status, ALK mRNA and protein levels Cellular Oncology. ,vol. 34, pp. 409- 417 ,(2011) , 10.1007/S13402-011-0048-2
Hannah Carter, Matan Hofree, Trey Ideker, Genotype to phenotype via network analysis Current Opinion in Genetics & Development. ,vol. 23, pp. 611- 621 ,(2013) , 10.1016/J.GDE.2013.10.003
Cormac Owens, Meredith Irwin, Neuroblastoma: the impact of biology and cooperation leading to personalized treatments. Critical Reviews in Clinical Laboratory Sciences. ,vol. 49, pp. 85- 115 ,(2012) , 10.3109/10408363.2012.683483
Junshui Ma, Robert P. Sheridan, Andy Liaw, George E. Dahl, Vladimir Svetnik, Deep neural nets as a method for quantitative structure-activity relationships. Journal of Chemical Information and Modeling. ,vol. 55, pp. 263- 274 ,(2015) , 10.1021/CI500747N
Richard White, Kristin Rose, Leonard Zon, Zebrafish cancer: the state of the art and the path forward Nature Reviews Cancer. ,vol. 13, pp. 624- 636 ,(2013) , 10.1038/NRC3589
Roberto Cattaneo, Anita Schmid, Daniel Eschle, Knut Baczko, Volker ter Meulen, Martin A. Billeter, Biased hypermutation and other genetic changes in defective measles viruses in human brain infections Cell. ,vol. 55, pp. 255- 265 ,(1988) , 10.1016/0092-8674(88)90048-7
Megu Ohtaki, Keiko Otani, Keiko Hiyama, Naomi Kamei, Kenichi Satoh, Eiso Hiyama, A robust method for estimating gene expression states using Affymetrix microarray probe level data BMC Bioinformatics. ,vol. 11, pp. 183- 183 ,(2010) , 10.1186/1471-2105-11-183
Maria Cekanova, Kusum Rathore, Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Design Development and Therapy. ,vol. 8, pp. 1911- 1921 ,(2014) , 10.2147/DDDT.S49584
Sharon J. Diskin, Cuiping Hou, Joseph T. Glessner, Edward F. Attiyeh, Marci Laudenslager, Kristopher Bosse, Kristina Cole, Yaël P. Mossé, Andrew Wood, Jill E. Lynch, Katlyn Pecor, Maura Diamond, Cynthia Winter, Kai Wang, Cecilia Kim, Elizabeth A. Geiger, Patrick W. McGrady, Alexandra I. F. Blakemore, Wendy B. London, Tamim H. Shaikh, Jonathan Bradfield, Struan F. A. Grant, Hongzhe Li, Marcella Devoto, Eric R. Rappaport, Hakon Hakonarson, John M. Maris, Copy number variation at 1q21.1 associated with neuroblastoma Nature. ,vol. 459, pp. 987- 991 ,(2009) , 10.1038/NATURE08035
S Das, K Bryan, P G Buckley, O Piskareva, I M Bray, N Foley, J Ryan, J Lynch, L Creevey, J Fay, S Prenter, J Koster, P van Sluis, R Versteeg, A Eggert, J H Schulte, A Schramm, P Mestdagh, J Vandesompele, F Speleman, R L Stallings, Modulation of Neuroblastoma Disease Pathogenesis by an Extensive Network of Epigenetically Regulated microRNAs Oncogene. ,vol. 32, pp. 2927- 2936 ,(2013) , 10.1038/ONC.2012.311