Quasi-interpolants Based on Trigonometric Splines

作者: Tom Lyche , Larry L. Schumaker , Sonya Stanley

DOI: 10.1006/JATH.1998.3196

关键词:

摘要: A general theory of quasi-interpolants based on trigonometric splines is developed which analogous to the polynomial spline case. The aim construct are local, easy compute, and apply a wide class functions. As examples, we give detailed treatment including error bounds for two classes especially useful in practice.

参考文章(9)
P.E. Koch, T. Lyche, BOUNDS FOR THE ERROR IN TRIGONOMETRIC HERMITE INTERPOLATION Quantitative Approximation#R##N#Proceedings of a Symposium on Quantitative Approximation Held in Bonn, West Germany, August 20–24, 1979. pp. 185- 196 ,(1980) , 10.1016/B978-0-12-213650-4.50022-2
C de Boor, G.J Fix, Spline approximation by quasiinterpolants Journal of Approximation Theory. ,vol. 8, pp. 19- 45 ,(1973) , 10.1016/0021-9045(73)90029-4
Larry L. Schumaker, Cornelis Traas, Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines Numerische Mathematik. ,vol. 60, pp. 133- 144 ,(1991) , 10.1007/BF01385718
Tom Lyche, A newton form for trigonometric Hermite interpolation Bit Numerical Mathematics. ,vol. 19, pp. 229- 235 ,(1979) , 10.1007/BF01930853
T. Lyche, R. Winther, A stable recurrence relation for trigonometric B-splines Journal of Approximation Theory. ,vol. 25, pp. 266- 279 ,(1979) , 10.1016/0021-9045(79)90017-0
Marian Neamtu, Larry L. Schumaker, Per Erik Koch, Tom Lyche, Control curves and knot insertion for trigonometric splines Advances in Computational Mathematics. ,vol. 3, pp. 405- 424 ,(1995) , 10.1007/BF03028369
Dan Gonsor, Marian Neamtu, Null Spaces of Differential Operators, Polar Forms, and Splines Journal of Approximation Theory. ,vol. 86, pp. 81- 107 ,(1996) , 10.1006/JATH.1996.0056
Tom Lyche, Larry L Schumaker, Local Spline Approximation Methods Journal of Approximation Theory. ,vol. 15, pp. 294- 325 ,(1975) , 10.1016/0021-9045(75)90091-X
Larry L. Schumaker, Spline Functions: Basic Theory ,(1993)