The Multi-Stage Gibbs Sampler

作者: Christian P. Robert , George Casella

DOI: 10.1007/978-1-4757-4145-2_10

关键词:

摘要: After two chapters of preparation on the slice and two-stage Gibbs samplers, respectively, we are now ready to envision entire picture for sampler. We describe general method in Section 10.1, whose theoretical properties less complete than special case (see 10.2): The defining difference between that sampler multi-stage version considered here is interleaving structure chain does not carry over. Some consequences fact individual subchains also Markov chains, Duality Principle Rao-Blackwellization hold some generality. None true here, case. Nevertheless, enjoys many optimality properties, still might be workhorse MCMC world. remainder this chapter deals with implementation considerations, connection important role Bayesian Statistics.

参考文章(13)
JULIAN BESAG, PETER CLIFFORD, Generalized Monte Carlo significance tests Biometrika. ,vol. 76, pp. 633- 642 ,(1989) , 10.1093/BIOMET/76.4.633
David J. Spiegelhalter, Steffen L. Lauritzen, Sequential updating of conditional probabilities on directed graphical structures Networks. ,vol. 20, pp. 579- 605 ,(1990) , 10.1002/NET.3230200507
David J. Spiegelhalter, A. Philip Dawid, Steffen L. Lauritzen, Robert G. Cowell, [Bayesian Analysis in Expert Systems]: Rejoinder Statistical Science. ,vol. 8, pp. 277- 283 ,(1993) , 10.1214/SS/1177010898
W. Qian, D.M. Titterington, Parameter estimation for hidden Gibbs chains Statistics & Probability Letters. ,vol. 10, pp. 49- 58 ,(1990) , 10.1016/0167-7152(90)90111-J
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596
Petros Dellaportas, Jonathan J Forster, Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models Biometrika. ,vol. 86, pp. 615- 633 ,(1999) , 10.1093/BIOMET/86.3.615
P. H. PESKUN, Optimum Monte-Carlo sampling using Markov chains Biometrika. ,vol. 60, pp. 607- 612 ,(1973) , 10.1093/BIOMET/60.3.607
Martin A. Tanner, Wing Hung Wong, The calculation of posterior distributions by data augmentation Journal of the American Statistical Association. ,vol. 82, pp. 528- 540 ,(1987) , 10.1080/01621459.1987.10478458