Estimating probability densities from short samples: A parametric maximum likelihood approach

作者: T. Dudok de Wit , E. Floriani

DOI: 10.1103/PHYSREVE.58.5115

关键词:

摘要: A parametric method similar to autoregressive spectral estimators is proposed determine the probability density function (pdf) of a random set. The proceeds by maximizing likelihood pdf, yielding estimates that perform equally well in tails as bulk distribution. It therefore suited for analysis short sets drawn from smooth pdfs and stands out simplicity its computational scheme. Its advantages limitations are discussed.

参考文章(20)
Christian Beck, Friedrich Schögl, Thermodynamics of Chaotic Systems: An Introduction Cambridge University Press. ,(1993) , 10.1017/CBO9780511524585
Friedrich Schögl, Christian Beck, Thermodynamics of chaotic systems ,(1993)
Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing ,(1989)
S. Kullback, R. A. Leibler, On Information and Sufficiency Annals of Mathematical Statistics. ,vol. 22, pp. 79- 86 ,(1951) , 10.1214/AOMS/1177729694
Bradford R. Crain, Estimation of Distributions Using Orthogonal Expansions Annals of Statistics. ,vol. 2, pp. 454- 463 ,(1974) , 10.1214/AOS/1176342706
Richard A. Tapia, James R. Thompson, Nonparametric probability density estimation ,(1978)
David H. Wolpert, David R. Wolf, Estimating functions of probability distributions from a finite set of samples Physical Review E. ,vol. 52, pp. 6841- 6854 ,(1995) , 10.1103/PHYSREVE.52.6841
R. Kronmal, M. Tarter, The Estimation of Probability Densities and Cumulatives by Fourier Series Methods Journal of the American Statistical Association. ,vol. 63, pp. 925- 952 ,(1968) , 10.1080/01621459.1968.11009321