Techniques in the Theory of Local Bifurcations: Cyclicity and Desingularization

作者: Robert Roussarie

DOI: 10.1007/978-94-015-8238-4_8

关键词:

摘要: A fundamental open question of the bifurcation theory vector fields in dimension 2 is whether number locally bifurcating limit cycles an analytic unfolding bounded, or more precisely, any periodic set has finite cyclicity. In these notes we introduce several techniques for attacking this question: asymptotic expansion return maps, ideal coefficients, desingularization parametrized families. Moreover, because their practical interest, present some partial results obtained by techniques.

参考文章(8)
S. Bochner, Several complex variables Indian Institute Of Astrophysics. ,(1948)
Yulij S. Ilyashenko, Local Dynamics and Nonlocal Bifurcations Springer Netherlands. pp. 279- 319 ,(1993) , 10.1007/978-94-015-8238-4_6
Christiane Rousseau, Bifurcation Methods in Polynomial Systems Springer Netherlands. pp. 383- 428 ,(1993) , 10.1007/978-94-015-8238-4_9
R Roussarie, Finite cyclicity of loops and cusps Nonlinearity. ,vol. 2, pp. 73- 117 ,(1989) , 10.1088/0951-7715/2/1/006
Zofia Denkowska, Robert Roussarie, A method of desingularization for analytic two-dimensional vector field families Boletim Da Sociedade Brasileira De Matematica. ,vol. 22, pp. 93- 126 ,(1991) , 10.1007/BF01244900
R. Roussarie, ON THE NUMBER OF LIMIT CYCLES WHICH APPEAR BY PERTURBATION OF SEPARATRIX LOOP OF PLANAR VECTOR FIELDS Boletim Da Sociedade Brasileira De Matematica. ,vol. 17, pp. 67- 101 ,(1986) , 10.1007/BF02584827
Shlomo Sternberg, On the Structure of Local Homeomorphisms of Euclidean n-Space, II American Journal of Mathematics. ,vol. 80, pp. 623- ,(1958) , 10.2307/2372774
Michael F. Barnsley, Fractals Everywhere ,(1988)