Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data

作者: P. Kumar , R. Prasad , D. K. Gupta , V. N. Mishra , A. K. Vishwakarma

DOI: 10.1080/10106049.2017.1316781

关键词:

摘要: AbstractIn the present study, Sentinel-1A Synthetic Aperture Radar analysis of time series data at C-band was carried out to estimate winter wheat crop growth parameters. Five different date images were acquired during January 2015–April 2015 stages from tillering ripening in Varanasi district, India. The parameters, i.e. leaf area index, vegetation water content (VWC), fresh biomass (FB), dry (DB) and plant height (PH) estimated using random forest regression (RFR), support vector (SVR), artificial neural network (ANNR) linear (LR) algorithms. Ground Range Detected products Interferometric Wide (IW) Swath used VV polarization. three subplots 1 m2 taken for measurement parameters every stage. In total, 73 samples as training data-sets 39 testing data-sets. highest sensitivity (adj. R2 = 0.95579) backsc...

参考文章(45)
F. Qiu, J. R. Jensen, Opening the black box of neural networks for remote sensing image classification International Journal of Remote Sensing. ,vol. 25, pp. 1749- 1768 ,(2004) , 10.1080/01431160310001618798
Michael Hornacek, Wolfgang Wagner, Daniel Sabel, Hong-Linh Truong, Paul Snoeij, Thomas Hahmann, Erhard Diedrich, Marcela Doubkova, Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. ,vol. 5, pp. 1303- 1311 ,(2012) , 10.1109/JSTARS.2012.2190136
F. Del Frate, P. Ferrazzoli, L. Guerriero, T. Strozzi, U. Wegmuller, G. Cookmartin, S. Quegan, Wheat cycle monitoring using radar data and a neural network trained by a model IEEE Transactions on Geoscience and Remote Sensing. ,vol. 42, pp. 35- 44 ,(2004) , 10.1109/TGRS.2003.817200
F Del Frate, P Ferrazzoli, G Schiavon, Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks Remote Sensing of Environment. ,vol. 84, pp. 174- 183 ,(2003) , 10.1016/S0034-4257(02)00105-0
Jochem Verrelst, Jordi Muñoz, Luis Alonso, Jesús Delegido, Juan Pablo Rivera, Gustavo Camps-Valls, José Moreno, Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 Remote Sensing of Environment. ,vol. 118, pp. 127- 139 ,(2012) , 10.1016/J.RSE.2011.11.002
Emilie Beriaux, Cozmin Lucau-Danila, Eric Auquiere, Pierre Defourny, Multiyear independent validation of the water cloud model for retrieving maize leaf area index from SAR time series Journal of remote sensing. ,vol. 34, pp. 4156- 4181 ,(2013) , 10.1080/01431161.2013.772676
Shaban Shataee, Syavash Kalbi, Asghar Fallah, Dieter Pelz, Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms Journal of remote sensing. ,vol. 33, pp. 6254- 6280 ,(2012) , 10.1080/01431161.2012.682661
Onisimo Mutanga, Elhadi Adam, Moses Azong Cho, High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm International Journal of Applied Earth Observation and Geoinformation. ,vol. 18, pp. 399- 406 ,(2012) , 10.1016/J.JAG.2012.03.012
D.K. Gupta, P. Kumar, V.N. Mishra, R. Prasad, P.K.S. Dikshit, S.B. Dwivedi, A. Ohri, R.S. Singh, V. Srivastava, Bistatic measurements for the estimation of rice crop variables using artificial neural network Advances in Space Research. ,vol. 55, pp. 1613- 1623 ,(2015) , 10.1016/J.ASR.2015.01.003