25 new r-self-orthogonal Latin squares

作者: Hantao Zhang

DOI: 10.1016/J.DISC.2013.04.021

关键词:

摘要: Abstract Two Latin squares of order n are r -orthogonal if their superposition produces exactly distinct ordered pairs. If one the two is transpose other, we say that square -self-orthogonal, denoted by - SOLS ( ) . It has been proved Xu and Chang necessary sufficient condition for existence an ≤ 2 ∉ { + 1 , − } with 26 genuine exceptions possible exceptions. In this paper, provide 25 new to reduce from one, i.e.,  = 14 3 We also idempotent incomplete self-orthogonal (ISOLS) a hole size 8.

参考文章(10)
Hantao Zhang, Combinatorial Designs by SAT Solvers. Handbook of Satisfiability. pp. 533- 568 ,(2009)
Charles J. Colbourn, L. Zhu, The Spectrum of R -Orthogonal Latin Squares Springer US. pp. 49- 75 ,(1995) , 10.1007/978-1-4613-3554-2_4
G.B. Belyavskaya, Chapter 6 - r-Orthogonal Latin Squares Annals of discrete mathematics. ,vol. 46, pp. 169- 202 ,(1991) , 10.1016/S0167-5060(08)70966-X
L. Zhu, Hantao Zhang, Completing the spectrum of r-orthogonal Latin squares Discrete Mathematics. ,vol. 268, pp. 343- 349 ,(2003) , 10.1016/S0012-365X(03)00053-0
Y. Xu, H. Zhang, L. Zhu, Existence of frame SOLS of type a n b 1 Discrete Mathematics. ,vol. 250, pp. 211- 230 ,(2002) , 10.1016/S0012-365X(01)00213-8
L. Zhu, H. Zhang, A few more r -orthogonal latin squares Discrete Mathematics. ,vol. 238, pp. 183- 191 ,(2001) , 10.1016/S0012-365X(00)00424-6
Yunqing Xu, Yanxun Chang, Existence of r-self-orthogonal Latin squares Discrete Mathematics. ,vol. 306, pp. 124- 146 ,(2006) , 10.1016/J.DISC.2005.11.012
Yunqing Xu, Yanxun Chang, On the spectrum of r-self-orthogonal Latin squares Discrete Mathematics. ,vol. 279, pp. 479- 498 ,(2004) , 10.1016/S0012-365X(03)00288-7
R. K. BRAYTON, DON COPPERSMITH, A. J. HOFFMAN, SELF-ORTHOGONAL LATIN SQUARES WORLD SCIENTIFIC. pp. 87- 95 ,(2003) , 10.1142/9789812796936_0008
Hantao Zhang, Frank E. Bennett, R. Julian R. Abel, Lie Zhu, A few more incomplete self-orthogonal Latin squares and related designs. Australas. J Comb.. ,vol. 21, pp. 85- 94 ,(2000)