Similarity matrices for pairs of graphs

作者: Vincent D. Blondel , Paul Van Dooren

DOI: 10.1007/3-540-45061-0_58

关键词:

摘要: We introduce a concept of similarity between vertices directed graphs. Let GA and GB be two graphs with respectively nA nB vertices. define × matrix S whose real entry sij expresses how similar vertex i (in GA) is to j GB): we say that their score. In the special case where = G, score G square self-similarity graph G. point out Kleinberg's "hub authority" method identify web-pages relevant given query can viewed as our definition in one has unique edge them. analogy Kleinberg, show scores are by components dominant vector non-negative propose simple iterative compute

参考文章(16)
Roger A. Horn, Charles R. Johnson, Matrix Analysis Cambridge University Press. ,(1985) , 10.1017/CBO9780511810817
Roger A Horn, Topics in Matrix Analysis ,(2010)
Norman Biggs, Algebraic Graph Theory Cambridge University Press. ,(1974) , 10.1017/CBO9780511608704
Vincent D. Blondel, Pierre P. Senellart, Automatic extraction of synonyms in a dictionary ,(2002)
Fan R K Chung, Spectral Graph Theory ,(1996)
Michael Doob, Dragoš M. Cvetković, Horst Sachs, Spectra of graphs : theory and application Johann Ambrosius Barth Verlag. ,(1995)
Peter Rowlinson, Dragoš M. Cvetković, Slobodan Simić, Eigenspaces of graphs ,(1997)
Pierre P. Senellart, Vincent D. Blondel, Automatic discovery of similar words Springer, New York, NY. pp. 25- 43 ,(2004) , 10.1007/978-1-4757-4305-0_2
D.J. Hartfiel, C.J. Maxson, The chainable matrix, a special combinatorial matrix Discrete Mathematics. ,vol. 12, pp. 245- 256 ,(1975) , 10.1016/0012-365X(75)90049-7
Frank Harary, Charles A. Trauth, Jr., Connectedness of Products of Two Directed Graphs SIAM Journal on Applied Mathematics. ,vol. 14, pp. 250- 254 ,(1966) , 10.1137/0114024