Relative structure cycles and the existence of smooth Lyapunov 1-forms for flows

作者: Janko Latschev

DOI:

关键词:

摘要: We give necessary and sufficient conditions for the existence of smooth Lyapunov 1-forms flow a vector field in terms behavior certain locally finite invariant measures. The main statement generalizes result Schwartzman, whereas methods are adapted from work Sullivan.

参考文章(7)
Charles Conley, Isolated Invariant Sets and the Morse Index American Mathematical Society. ,vol. 38, ,(1978) , 10.1090/CBMS/038
Herbert Federer, Geometric Measure Theory ,(1969)
Michael Farber, Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory Topological Methods in Nonlinear Analysis. ,vol. 19, pp. 123- 152 ,(2002) , 10.12775/TMNA.2002.008
H. Fan, J. Jost, Novikov-Morse theory for dynamical systems Calculus of Variations and Partial Differential Equations. ,vol. 17, pp. 29- 73 ,(2003) , 10.1007/S00526-002-0159-8
Dennis Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds Inventiones Mathematicae. ,vol. 36, pp. 225- 255 ,(1976) , 10.1007/BF01390011
Richard C Churchill, Isolated invariant sets in compact metric spaces Journal of Differential Equations. ,vol. 12, pp. 330- 352 ,(1972) , 10.1016/0022-0396(72)90036-8
Janko Latschev, Flows with Lyapunov one-forms and a generalization of Farber's theorem on homoclinic cycles International Mathematics Research Notices. ,vol. 2004, pp. 239- 247 ,(2004) , 10.1155/S1073792804131887