Microcomputer-based estimation of psychophysical thresholds: The Best PEST

作者: Harris R. Lieberman , Alex P. Pentland

DOI: 10.3758/BF03202110

关键词:

摘要: A new, maximally efficient technique for measuring psychophysical thresholds (Pentland, 1980) has been implemented on the microcomputer. This PEST (parameter estimation by sequential testing) is most parameter possible, given that form of psychometric function known. The similar to but faster and more accurate than other staircase procedures may be applied whenever techniques are applicable. “Best PEST” easily micro-computer; a BASIC program Apple II which does so presented. Best compared with procedures, including one recently micro-computer (Corwin, Kintz, & Beaty, 1979).

参考文章(8)
G. B. Wetherill, H. Levitt, SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION British Journal of Mathematical and Statistical Psychology. ,vol. 18, pp. 1- 10 ,(1965) , 10.1111/J.2044-8317.1965.TB00689.X
J. M. Findlay, Estimates on probability functions: A more virulent PEST Perception & Psychophysics. ,vol. 23, pp. 181- 185 ,(1978) , 10.3758/BF03208300
Tom N. Cornsweet, The staircrase-method in psychophysics. American Journal of Psychology. ,vol. 75, pp. 485- 491 ,(1962) , 10.2307/1419876
Thomas R. Corwin, Robert T. Kintz, William J. Beaty, Computer-aided estimation of psychophysical thresholds by Wetherill tracking Behavior Research Methods & Instrumentation. ,vol. 11, pp. 526- 528 ,(1979) , 10.3758/BF03201370
W. J. Dixon, A. M. Mood, A Method for Obtaining and Analyzing Sensitivity Data Journal of the American Statistical Association. ,vol. 43, pp. 109- 126 ,(1948) , 10.1080/01621459.1948.10483254
M. M. Taylor, C. Douglas Creelman, PEST: Efficient Estimates on Probability Functions Journal of the Acoustical Society of America. ,vol. 41, pp. 782- 787 ,(1967) , 10.1121/1.1910407
Alex Pentland, Maximum likelihood estimation: The best PEST Perception & Psychophysics. ,vol. 28, pp. 377- 379 ,(1980) , 10.3758/BF03204398
G. B. Wetherill, Sequential Estimation of Quantal Response Curves Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 25, pp. 1- 38 ,(1963) , 10.1111/J.2517-6161.1963.TB00481.X