Probabilistic Discriminative Kernel Classifiers for Multi-class Problems

作者: Volker Roth

DOI: 10.1007/3-540-45404-7_33

关键词:

摘要: Logistic regression is presumably the most popular representative of probabilistic discriminative classifiers. In this paper, a kernel variant logistic introduced as an iteratively re-weighted least-squares algorithm in kernel-induced feature spaces. This formulation allows us to apply highly efficient approximation methods that are capable dealing with large-scale problems. For multi-class problems, pairwise coupling procedure proposed. Pairwise for "kernelized" effectively overcomes conceptual and numerical problems standard

参考文章(15)
Ronan Collobert, Samy Bengio, Support Vector Machines for Large-Scale Regression Problems IDIAP. ,(2000)
Trevor Hastie, Robert Tibshirani, Classification by pairwise coupling Annals of Statistics. ,vol. 26, pp. 451- 471 ,(1998) , 10.1214/AOS/1028144844
Arthur E. Hoerl, Robert W. Kennard, Ridge regression: biased estimation for nonorthogonal problems Technometrics. ,vol. 42, pp. 80- 86 ,(2000) , 10.2307/1271436
M. R. Osborne, Fisher's Method of Scoring International Statistical Review. ,vol. 60, pp. 99- 117 ,(1992) , 10.2307/1403504
I.T. Nabney, Efficient training of RBF networks for classification 9th International Conference on Artificial Neural Networks: ICANN '99. ,vol. 1, pp. 210- 215 ,(1999) , 10.1049/CP:19991110
Robert J. Vanderbei, LOQO:an interior point code for quadratic programming Optimization Methods & Software. ,vol. 11, pp. 451- 484 ,(1999) , 10.1080/10556789908805759
D. R. Cox, E. J. Snell, analysis of binary data ,(1970)
Volker Steinhage, Volker Roth, Nonlinear Discriminant Analysis Using Kernel Functions neural information processing systems. ,vol. 12, pp. 568- 574 ,(1999)
K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to kernel-based learning algorithms IEEE Transactions on Neural Networks. ,vol. 12, pp. 181- 201 ,(2001) , 10.1109/72.914517
L. Hermes, D. Frieauff, J. Puzicha, J.M. Buhmann, Support vector machines for land usage classification in Landsat TM imagery international geoscience and remote sensing symposium. ,vol. 1, pp. 348- 350 ,(1999) , 10.1109/IGARSS.1999.773494