On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration

作者: Tony F. Chan , Pep Mulet

DOI: 10.1137/S0036142997327075

关键词:

摘要: In this paper we show that the lagged diffusivity fixed point algorithm introduced by Vogel and Oman in [ SIAM J. Sci. Comput., 17 (1996), pp. 227--238] to solve problem of total variation denoising, proposed Rudin, Osher, Fatemi Phys. D, 60 (1992), 259--268], is a particular instance class algorithms Voss Eckhardt Computing, 25 (1980), 243--251], whose origins can be traced back Weiszfeld's original work for minimizing sum Euclidean lengths Tohoku Math. J., 43 (1937), 355--386]. There have recently appeared several proofs convergence [G. Aubert et al., Technical report 94-01, Informatique, Signaux Systemes de Sophia Antipolis, 1994], [A. Chambolle P.-L. Lions, 9509, CEREMADE, 1995], [D. C. Dobson R. Vogel, Numer. Anal., 34 (1997), 1779--1791]. Here present proof global linear using framework [H. U. Eckhart, 243--251] give bound rate iteration agrees with our experimental results. These results are also valid suitable generalizations algorithm.

参考文章(11)
H. Voß, U. Eckhardt, Linear convergence of generalized Weiszfeld's method Computing. ,vol. 25, pp. 243- 251 ,(1980) , 10.1007/BF02242002
Ivar Ekeland, Roger Téman, Convex analysis and variational problems ,(1976)
Tony F. Chan, H. M. Zhou, Raymond H. Chan, Continuation method for total variation denoising problems conference on advanced signal processing : algorithms, architectures, and implemenations. ,vol. 2563, pp. 314- 325 ,(1995) , 10.1117/12.211408
D. Geman, Chengda Yang, Nonlinear image recovery with half-quadratic regularization IEEE Transactions on Image Processing. ,vol. 4, pp. 932- 946 ,(1995) , 10.1109/83.392335
Manabu Shirosaki, Another proof of the defect relation for moving targets Tohoku Mathematical Journal. ,vol. 43, pp. 355- 360 ,(1991) , 10.2748/TMJ/1178227459
David C. Dobson, Curtis R. Vogel, Convergence of an Iterative Method for Total Variation Denoising SIAM Journal on Numerical Analysis. ,vol. 34, pp. 1779- 1791 ,(1997) , 10.1137/S003614299528701X
Antonin Chambolle, Pierre-Louis Lions, Image recovery via total variation minimization and related problems Numerische Mathematik. ,vol. 76, pp. 167- 188 ,(1997) , 10.1007/S002110050258
Peter Blomgren, Tony F. Chan, Pep Mulet, Extensions to total variation denoising conference on advanced signal processing algorithms architectures and implemenations. ,vol. 3162, pp. 367- 375 ,(1997) , 10.1117/12.279496
Leonid I. Rudin, Stanley Osher, Emad Fatemi, Nonlinear total variation based noise removal algorithms Physica D: Nonlinear Phenomena. ,vol. 60, pp. 259- 268 ,(1992) , 10.1016/0167-2789(92)90242-F
P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Deterministic edge-preserving regularization in computed imaging IEEE Transactions on Image Processing. ,vol. 6, pp. 298- 311 ,(1997) , 10.1109/83.551699