Template-based protein modeling: recent methodological advances.

作者: Pankaj Daga , Ronak Patel , Robert Doerksen

DOI: 10.2174/156802610790232314

关键词:

摘要: Protein modeling has been a very challenging problem in drug discovery and computational biology. The latest advances and progress in computational power have helped to solve this …

参考文章(150)
Tony Håndstad, Arne JH Hestnes, Pål Sætrom, Motif kernel generated by genetic programming improves remote homology and fold detection. BMC Bioinformatics. ,vol. 8, pp. 23- 23 ,(2007) , 10.1186/1471-2105-8-23
Patrick Aloy, José M. Mas, Marc A. Martí-Renom, Enrique Querol, Francesc X. Avilés, Baldomero Oliva, Refinement of modelled structures by knowledge-based energy profiles and secondary structure prediction: application to the human procarboxypeptidase A2. Journal of Computer-aided Molecular Design. ,vol. 14, pp. 83- 92 ,(2000) , 10.1023/A:1008197831529
Emilio Xavier Esposito, Dror Tobi, Jeffry D. Madura, Comparative Protein Modeling John Wiley & Sons, Inc.. pp. 57- 167 ,(2006) , 10.1002/0471780367.CH2
Scott Montgomerie, Shan Sundararaj, Warren J Gallin, David S Wishart, Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics. ,vol. 7, pp. 301- 301 ,(2006) , 10.1186/1471-2105-7-301
Zafer Aydin, Yucel Altunbasak, Mark Borodovsky, Protein secondary structure prediction for a single-sequence using hidden semi-Markov models BMC Bioinformatics. ,vol. 7, pp. 178- 178 ,(2006) , 10.1186/1471-2105-7-178
Dongbo Bu, Dongbo Bu, Jinbo Xu, Shuai Cheng Li, Mirig Li, Xin Gao, FragQA: predicting local fragment quality of a sequence-structure alignment Genome Informatics. ,vol. 19, pp. 27- 39 ,(2007) , 10.11234/GI1990.19.27
Hua Zhang, Tuo Zhang, Ke Chen, Shiyi Shen, Jishou Ruan, Lukasz Kurgan, Sequence based residue depth prediction using evolutionary information and predicted secondary structure BMC Bioinformatics. ,vol. 9, pp. 388- 388 ,(2008) , 10.1186/1471-2105-9-388
Bj�rn Wallner, Huisheng Fang, Arne Elofsson, Automatic consensus-based fold recognition using Pcons, ProQ, and Pmodeller. Proteins. ,vol. 53, pp. 534- 541 ,(2003) , 10.1002/PROT.10536