Rouquier's theorem on representation dimension

作者: Dirk Kussin , Henning Krause

DOI:

关键词:

摘要: Based on work of Rouquier, some bounds for Aulander's representation dimension are discussed. More specifically, if X is a reduced projective scheme n over field, and T tilting complex coherentOX-modules, then the endomorphism algebra EndOX(T) at least n.

参考文章(8)
Osamu Iyama, Finiteness of representation dimension Proceedings of the American Mathematical Society. ,vol. 131, pp. 1011- 1014 ,(2002) , 10.1090/S0002-9939-02-06616-9
John C McConnell, James Christopher Robson, Lance W Small, Noncommutative Noetherian Rings ,(2001)
J.Daniel Christensen, Ideals in triangulated categories: phantoms, ghosts and skeleta Advances in Mathematics. ,vol. 136, pp. 284- 339 ,(1998) , 10.1006/AIMA.1998.1735
A. A. Beilinson, Coherent sheaves on P n and problems of linear algebra Functional Analysis and Its Applications. ,vol. 12, pp. 214- 216 ,(1978) , 10.1007/BF01681436
Auslander Maurice, Representation Theory of Artin Algebras I Communications in Algebra. ,vol. 1, pp. 177- 268 ,(1974) , 10.1080/00927877408548230
Raphaël Rouquier, Dimensions of triangulated categories Journal of K-theory. ,vol. 1, pp. 193- 256 ,(2008) , 10.1017/IS007011012JKT010
A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry Moscow Mathematical Journal. ,vol. 3, pp. 1- 36 ,(2003) , 10.17323/1609-4514-2003-3-1-1-36