II Quantum Phenomena in Optical Interferometry

作者: P. Hariharan , B.C. Sanders

DOI: 10.1016/S0079-6638(08)70313-5

关键词:

摘要: Publisher Summary The quantum analog of classical coherence functions helps to characterize the properties nonclassical radiation. Measurements second-order cannot provide unambiguous evidence light; thus, measurements fourth-order are required distinguish from Interference effects should become weaker as number photons decreases and disappear completely when no more than one photon is in apparatus at a time. wave function system may undergo phase shift (a geometric phase) parameters cyclic change. This change can be observed by interference if cycled compared with another that has not undergone any realized using two spatially separated detectors, or correlating photo detections Interferometry domain characterized complementarity: vs particle, certainty phase, visibility fringes path. paradox undular corpuscular aspects light, which flow description, led many experiments for studying complementarity.

参考文章(190)
A. R. Marlow, Mathematical foundations of quantum theory Academic Press. ,(1978)
K. F. v. Weizs�cker, Ortsbestimmung eines Elektrons durch ein Mikroskop European Physical Journal. ,vol. 70, pp. 114- 130 ,(1931) , 10.1007/BF01391035
Walter Heitler, The quantum theory of radiation ,(1936)
S.C. Tiwari, Geometric Phase in Optics: Quantal or Classical? Journal of Modern Optics. ,vol. 39, pp. 1097- 1105 ,(1992) , 10.1080/09500349214551101
J. D. Franson, Bell inequality for position and time Physical Review Letters. ,vol. 62, pp. 2205- 2208 ,(1989) , 10.1103/PHYSREVLETT.62.2205
T. D. Newton, E. P. Wigner, Localized States for Elementary Systems Reviews of Modern Physics. ,vol. 21, pp. 400- 406 ,(1949) , 10.1103/REVMODPHYS.21.400
J. D. Franson, Violations of a simple inequality for classical fields. Physical Review Letters. ,vol. 67, pp. 290- 293 ,(1991) , 10.1103/PHYSREVLETT.67.290
Paul Adrien Maurice Dirac, The Principles of Quantum Mechanics ,(1930)
D. T. Smithey, M. Beck, J. Cooper, M. G. Raymer, Measurement of number-phase uncertainty relations of optical fields Physical Review A. ,vol. 48, pp. 3159- 3167 ,(1993) , 10.1103/PHYSREVA.48.3159