Self‐Consistent MAPW Calculation with a Warped Muffin‐Tin Potential. I. The Electronic Structure of Al and Its Pressure Dependence

作者: H. Bross , R. Eder

DOI: 10.1002/PSSB.2221440116

关键词:

摘要: The electronic structure of lithium is self-consistently evaluated in the b.c.c. and f.c.c. phase on a wide range lattice parameter, using formalism which allows incorporation leading warped-muffin-tin correction. With increasing compression band exhibits rather peculiar modifications. At high conduction has its lowest energy at N-point whereas Γ-point shifted above Fermi level. this information free-energy per Wigner-Seitz-cell zero-temperature equation state are straightforwardly derived. Using Hedin-Lundqvist expression for exchange correlation found to be more stable all pressures up 2 × 1011 Pa, contrary recent investigations. However, final conclusion about stability phases not possible as long no similar investigations h.c.p. have been performed. Uber einen weiten Bereich der Gitterkonstante wird die elektronische Struktur von k.r.z.-Lithium und k.f.z.-Lithium mit einem Formalismus selbstkonsistent berechnet, wesentlichen „warped-muffin-tin”-Korrekturen zu berucksichtigen erlaubt. Mit zunehmender Kompression verandert sich Bandstruktur drastisch; bei sehr hohen Drucken liegt das Minimum des Leitungs-bandes im Punkte N, wahrend tiefste Energie Γ-Punktes uber Fermikante geschoben wird. Hilfe selbstkonsistenten Potentials, dem Austausch- Korrelationseffekte nach berucksichtigt sind, werden Anteil Gesamtenergie daraus weiter freie pro Wigner-Seitz-Zelle Grenzfall T = 0, Druck isotherme Kompressionsmodul berechnet. Bis Grose Pa stellt k.r.z.-Phase energetisch niedriger als k.f.z.-Phase heraus. Solange analoge Untersuchungen nicht fur h.c.p.-Phase ausgefuhrt konnen keine endgultigen Aussagen Phasenstabilitat gemacht werden.

参考文章(54)
Orson L. Anderson, The use of ultrasonic measurements under modest pressure to estimate compression at high pressure Journal of Physics and Chemistry of Solids. ,vol. 27, pp. 134- 152 ,(1966) , 10.1016/0022-3697(66)90199-5
Peter J. Melz, Effect of High Pressure on the Fermi Surface of Aluminum Physical Review. ,vol. 152, pp. 540- 547 ,(1966) , 10.1103/PHYSREV.152.540
William E. Rudge, Self-Consistent Augmented-Plane-Wave Method Physical Review. ,vol. 181, pp. 1024- 1032 ,(1969) , 10.1103/PHYSREV.181.1024
R.E. Schmunk, Charles S. Smith, Pressure derivatives of the elastic constants of aluminum and magnesium Journal of Physics and Chemistry of Solids. ,vol. 9, pp. 100- 112 ,(1959) , 10.1016/0022-3697(59)90200-8
Michel M. Dacorogna, Marvin L. Cohen, First-principles study of the structural properties of alkali metals Physical Review B. ,vol. 34, pp. 4996- 5002 ,(1986) , 10.1103/PHYSREVB.34.4996
Frank W. Averill, Calculation of the Cohesive Energies and Bulk Properties of the Alkali Metals Physical Review B. ,vol. 6, pp. 3637- 3642 ,(1972) , 10.1103/PHYSREVB.6.3637
A. K. McMahan, John A. Moriarty, Structural phase stability in third-period simple metals Physical Review B. ,vol. 27, pp. 3235- 3251 ,(1983) , 10.1103/PHYSREVB.27.3235
John A. Moriarty, A. K. McMahan, High-Pressure Structural Phase Transitions in Na, Mg, and Al Physical Review Letters. ,vol. 48, pp. 809- 812 ,(1982) , 10.1103/PHYSREVLETT.48.809
T. Soma, Y. Konno, H.-M. Kagaya, Compression Effect on the Bulk Modulus of Al Physica Status Solidi B-basic Solid State Physics. ,vol. 118, ,(1983) , 10.1002/PSSB.2221180262