A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework

作者: Di Long , Vijay P. Singh

DOI: 10.1029/2011WR010607

关键词:

摘要: [1] The surface energy balance algorithm for land (SEBAL) has been designed and widely used (and misused) worldwide to estimate evapotranspiration across varying spatial temporal scales using satellite remote sensing over the past 15 yr. It is, however, beset by visual identification of a hot cold pixel determine temperature difference (dT) between lower atmosphere, which is assumed be linearly correlated with radiative (Trad) throughout scene. To reduce ambiguity in flux estimation SEBAL due subjectivity extreme selection, this study first demonstrates that rectangular framework contextual relationship vegetation fraction (fc) Trad, can distort distribution heat retrievals degrees. End members were replaced trapezoidal fc-Trad space modified (M-SEBAL). The warm edge determined analytically deriving temperatures bare largest water stress fully vegetated implicit both radiation budget equations. Areally averaged air (Ta) site taken framework. Coefficients linear dT Trad vary fc but are essentially invariant same or within class M-SEBAL. M-SEBAL applied soil moisture-atmosphere coupling experiment (SMACEX) central Iowa, U.S. Results show capable reproducing latent terms an overall root-mean-square 41.1 W m−2 mean absolute percentage 8.9% reference eddy covariance tower-based measurements three landsat thematic mapper/enhanced mapper plus imagery acquisition dates 2002. retrieval accuracy generally than M-SEBAL, depending largely on selected extremes. Spatial distributions from distorted certain degree its intrinsic

参考文章(77)
J. M. Norman, M. C. Anderson, W. P. Kustas, A. N. French, J. Mecikalski, R. Torn, G. R. Diak, T. J. Schmugge, B. C. W. Tanner, Remote sensing of surface energy fluxes at 101‐m pixel resolutions Water Resources Research. ,vol. 39, pp. 1221- ,(2003) , 10.1029/2002WR001775
J. M. Norman, Are Single‐Source, Remote‐Sensing Surface‐Flux Models Too Simple? Earth Observation for Vegetation Monitoring and Water Management. ,vol. 852, pp. 170- 177 ,(2006) , 10.1063/1.2349341
Wim GM Bastiaanssen, Mobin‐ud‐Din Ahmad, Yann Chemin, None, Satellite surveillance of evaporative depletion across the Indus Basin Water Resources Research. ,vol. 38, pp. 9- 1 ,(2002) , 10.1029/2001WR000386
J. Cristóbal, J. C. Jiménez‐Muñoz, J. A. Sobrino, M. Ninyerola, X. Pons, Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature Journal of Geophysical Research. ,vol. 114, ,(2009) , 10.1029/2008JD010616
Le Jiang, Shafiqul Islam, Wei Guo, Antarpreet Singh Jutla, Sharika U.S. Senarath, Bruce H. Ramsay, Elfatih Eltahir, A satellite-based Daily Actual Evapotranspiration estimation algorithm over South Florida grid and pervasive computing. ,vol. 67, pp. 62- 77 ,(2009) , 10.1016/J.GLOPLACHA.2008.12.008
Matthew F. McCabe, Eric F. Wood, Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors Remote Sensing of Environment. ,vol. 105, pp. 271- 285 ,(2006) , 10.1016/J.RSE.2006.07.006
M.P. Gonzalez-Dugo, C.M.U. Neale, L. Mateos, W.P. Kustas, J.H. Prueger, M.C. Anderson, F. Li, A comparison of operational remote sensing-based models for estimating crop evapotranspiration Agricultural and Forest Meteorology. ,vol. 149, pp. 1843- 1853 ,(2009) , 10.1016/J.AGRFORMET.2009.06.012
JA Sobrino, N Raissouni, Zhao-Liang Li, A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data Remote Sensing of Environment. ,vol. 75, pp. 256- 266 ,(2001) , 10.1016/S0034-4257(00)00171-1
J.G. Ramos, C.R. Cratchley, J.A. Kay, M.A. Casterad, A. Martínez-Cob, R. Domínguez, Evaluation of satellite evapotranspiration estimates using ground-meteorological data available for the Flumen District into the Ebro Valley of N.E. Spain Agricultural Water Management. ,vol. 96, pp. 638- 652 ,(2009) , 10.1016/J.AGWAT.2008.10.001