Koszulity for Nonquadratic Algebras

作者: Roland Berger

DOI: 10.1006/JABR.2000.8703

关键词:

摘要: Abstract It is known that a Koszul algebra defined as being quadratic with “pure” resolution of the ground field. In this paper, we extend Koszulity to algebras whose relations are homogeneous degree s  > 2. A cubic Artin–Schelter regular has motivated our work. Generalized connected lattice distributivity and confluence. generalized symmetric proved be Koszul, bimodule version used for investigating its Hochschild homology.

参考文章(18)
Roland Berger, Weakly Confluent Quadratic Algebras Algebras and Representation. ,vol. 1, pp. 189- 213 ,(1998) , 10.1023/A:1009918131382
Jörgen Backelin, Ralf Fröberg, Koszul algebras, Veronese subrings, and rings with linear resolutions Rev. Roumaine. ,vol. 30, ,(1985)
Alexander Beilinson, Victor Ginzburg, Wolfgang Soergel, Koszul Duality Patterns in Representation Theory Journal of the American Mathematical Society. ,vol. 9, pp. 473- 527 ,(1996) , 10.1090/S0894-0347-96-00192-0
Ralph Fröberg, Determination of a class of Poincaré series. MATHEMATICA SCANDINAVICA. ,vol. 37, pp. 29- 39 ,(1975) , 10.7146/MATH.SCAND.A-11585
Yu. I. Manin, Some remarks on Koszul algebras and quantum groups Annales de l'Institut Fourier. ,vol. 37, pp. 191- 205 ,(1987) , 10.5802/AIF.1117
David J. Anick, On the homology of associative algebras Transactions of the American Mathematical Society. ,vol. 296, pp. 641- 659 ,(1986) , 10.1090/S0002-9947-1986-0846601-5
Michael Artin, William F Schelter, Graded algebras of global dimension 3 Advances in Mathematics. ,vol. 66, pp. 171- 216 ,(1987) , 10.1016/0001-8708(87)90034-X
M.C.R. Butler, A.D. King, Minimal Resolutions of Algebras Journal of Algebra. ,vol. 212, pp. 323- 362 ,(1999) , 10.1006/JABR.1998.7599
Roland Berger, Confluence and Koszulity Journal of Algebra. ,vol. 201, pp. 243- 283 ,(1998) , 10.1006/JABR.1997.7249