2-Killing vector fields on warped product manifolds

作者: Sameh Shenawy , Bülent Ünal

DOI: 10.1142/S0129167X15500652

关键词:

摘要: This paper provides a study of 2-Killing vector fields on warped product manifolds as well characterization this structure standard static and generalized Robertson–Walker space-times. Some conditions for field manifold to be parallel are obtained. Moreover, some results the curvature in terms derived. Finally, we apply our describe well-known space-time models.

参考文章(27)
Miguel Sánchez, On the Geometry of Generalized Robertson± Walker Spacetimes: Geodesics General Relativity and Gravitation. ,vol. 30, pp. 915- 932 ,(1998) , 10.1023/A:1026664209847
George Isac, Sándor Zoltán Németh, Monotone Vector Fields on Riemannian Manifolds and Scalar Derivatives Springer, Boston, MA. pp. 179- 229 ,(2008) , 10.1007/978-0-387-73988-5_5
Németh S.Z., Five kinds of monotone vector fields Pure mathematics and applications. ,vol. 9, pp. 417- 428 ,(1998)
David Blair, Almost contact manifolds with Killing structure tensors. Pacific Journal of Mathematics. ,vol. 39, pp. 285- 292 ,(1971) , 10.2140/PJM.1971.39.285
Sharief Deshmukh, Conformal Vector Fields and Eigenvectors of Laplacian Operator Mathematical Physics Analysis and Geometry. ,vol. 15, pp. 163- 172 ,(2012) , 10.1007/S11040-012-9106-X
Miguel Sánchez, On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields Journal of Geometry and Physics. ,vol. 31, pp. 1- 15 ,(1999) , 10.1016/S0393-0440(98)00061-8
Dean Allison, Geodesic completeness in static space-times Geometriae Dedicata. ,vol. 26, ,(1988) , 10.1007/BF00148016
Krishan L. Duggal, Ramesh Sharma, Conformal killing vector fields on spacetime solutions of Einstein's equations and initial data Nonlinear Analysis: Theory, Methods & Applications. ,vol. 63, pp. e447- e454 ,(2005) , 10.1016/J.NA.2004.09.034
A. Barani, M.R. Pouryayevali, Invariant monotone vector fields on Riemannian manifolds Nonlinear Analysis: Theory, Methods & Applications. ,vol. 70, pp. 1850- 1861 ,(2009) , 10.1016/J.NA.2008.02.085