BIFURCATION ANALYSIS OF NONLINEAR TURNING POINT PROBLEMS

作者: Charles G. Lange , Gregory A. Kriegsmann

DOI: 10.1137/0145010

关键词:

摘要: A bifurcation analysis is carried out on a class of nonlinear two-point boundary value problems for which the associated linearized equations have turning point structure. perturbation method used to study behavior solutions branching from large eigenvalues. The results are compared with those previously obtained without points.

参考文章(16)
M. J. Ablowitz, H. Segur, Asymptotic Solutions of the Korteweg-deVries Equation Studies in Applied Mathematics. ,vol. 57, pp. 13- 44 ,(1977) , 10.1002/SAPM197757113
Charles G. Lange, Gregory A. Kriegsmann, The axisymmetric branching behavior of complete spherical shells Quarterly of Applied Mathematics. ,vol. 39, pp. 145- 178 ,(1981) , 10.1090/QAM/625467
S. S. Antman, Joseph Bishop Keller, Bifurcation theory and nonlinear eigenvalue problems, 1967 New York University ,Courant Institute of Mathematical Sciences. ,(1968)
Steven A. Orszag, Carl M. Bender, Advanced mathematical methods for scientists and engineers ,(1978)
Rudolph E. Langer, The boundary problem associated with a differential equation in which the coefficient of the parameter changes sign Transactions of the American Mathematical Society. ,vol. 31, pp. 1- 24 ,(1929) , 10.1090/S0002-9947-1929-1501464-4
Charles G. Lange, Branching from Closely Spaced Eigenvalues with Application to a Model Biochemical Reaction Siam Journal on Applied Mathematics. ,vol. 40, pp. 35- 51 ,(1981) , 10.1137/0140003
James A. Boa, Donald S. Cohen, Bifurcation of Localized Disturbances in a Model Biochemical Reaction Siam Journal on Applied Mathematics. ,vol. 30, pp. 123- 135 ,(1976) , 10.1137/0130015
U. Ascher, J. Christiansen, R. D. Russell, Collocation Software for Boundary-Value ODEs ACM Transactions on Mathematical Software. ,vol. 7, pp. 209- 222 ,(1981) , 10.1145/355945.355950