Handling Concept Drift

作者: Moamar Sayed-Mouchaweh

DOI: 10.1007/978-3-319-25667-2_3

关键词:

摘要: In this chapter, the different methods and techniques used to learn from data streams in evolving nonstationary environments will be presented, their performances compared according generated drift characteristics as well application context objectives. The goal is define criteria order help readers efficiently design suitable learning scheme for a particular application. For aim, these are classified set of meaningful criteria. Several examples illustrate discuss principal performance techniques.

参考文章(57)
Ludmila I. Kuncheva, Classifier Ensembles for Changing Environments multiple classifier systems. pp. 1- 15 ,(2004) , 10.1007/978-3-540-25966-4_1
Kyosuke Nishida, Koichiro Yamauchi, Detecting Concept Drift Using Statistical Testing Discovery Science. pp. 264- 269 ,(2007) , 10.1007/978-3-540-75488-6_27
Ralf Klinkenberg, Lehrstuhl Informatik Viii, Daimler-Benz Ag, Ingrid Renz, Adaptive Information Filtering: Learning in the Presence of Concept Drifts ,(1998)
Christophe Pagano, Eric Granger, Robert Sabourin, Gian Luca Marcialis, Fabio Roli, Dynamic Weighted Fusion of Adaptive Classifier Ensembles Based on Changing Data Streams artificial neural networks in pattern recognition. ,vol. 8774, pp. 105- 116 ,(2014) , 10.1007/978-3-319-11656-3_10
Habiboulaye Amadou Boubacar, Stéphane Lecoeuche, Salah Maouche, AUDyC Neural Network using a new Gaussian Densities Merge Mechanism Adaptive and Natural Computing Algorithms. pp. 155- 158 ,(2005) , 10.1007/3-211-27389-1_37
Indrė Žliobaitė, Combining Time and Space Similarity for Small Size Learning under Concept Drift ISMIS '09 Proceedings of the 18th International Symposium on Foundations of Intelligent Systems. pp. 412- 421 ,(2009) , 10.1007/978-3-642-04125-9_44
Cesare Alippi, Learning in Nonstationary and Evolving Environments Springer, Cham. pp. 211- 247 ,(2014) , 10.1007/978-3-319-05278-6_9
Biqing Wu, Michael Roemer, Frank Lewis, George Vachtsevanos, Andrew Hess, Intelligent Fault Diagnosis and Prognosis for Engineering Systems ,(2006)
Imen Khamassi, Moamar Sayed-Mouchaweh, Moez Hammami, Khaled Ghédira, Self-Adaptive Windowing Approach for Handling Complex Concept Drift Cognitive Computation. ,vol. 7, pp. 772- 790 ,(2015) , 10.1007/S12559-015-9341-0
Ivan Koychev, Gradual Forgetting for Adaptation to Concept Drift Proceedings of ECAI 2000 Workshop on Current Issues in Spatio-Temporal Reasoning,. ,(2000)