Extracting kinetic information from literature with KineticRE.

作者: Ana Alão Freitas , Isabel Rocha , Miguel Rocha , Hugo Costa

DOI: 10.2390/BIECOLL-JIB-2015-282

关键词:

摘要: To better understand the dynamic behavior of metabolic networks in a wide variety conditions, field Systems Biology has increased its interest use kinetic models. The different databases, available these days, do not contain enough data regarding this topic. Given that significant part relevant information for development such models is still spread literature, it becomes essential to develop specific and powerful text mining tools collect data. In context, work as main objective tool extract, from scientific parameters, their respective values relations with enzymes metabolites. approach proposed integrates novel plug-in over framework @Note2. end, pipeline developed was validated case study on Kluyveromyces lactis, spanning analysis results 20 full documents.

参考文章(20)
Hagit Shatkay, Mark Craven, Mining the Biomedical Literature ,(2012)
Ida Schomburg, Antje Chang, Sandra Placzek, Carola Söhngen, Michael Rother, Maren Lang, Cornelia Munaretto, Susanne Ulas, Michael Stelzer, Andreas Grote, Maurice Scheer, Dietmar Schomburg, BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA Nucleic Acids Research. ,vol. 41, pp. 764- 772 ,(2012) , 10.1093/NAR/GKS1049
Arne Buchholz, Jochen Hurlebaus, Christian Wandrey, Ralf Takors, Metabolomics: quantification of intracellular metabolite dynamics. Biomolecular Engineering. ,vol. 19, pp. 5- 15 ,(2002) , 10.1016/S1389-0344(02)00003-5
Ida Schomburg, Oliver Hofmann, Claudia Baensch, Antje Chang, Dietmar Schomburg, Enzyme data and metabolic information: BRENDA, a resource for research in biology, biochemistry, and medicine Gene Function & Disease. ,vol. 1, pp. 109- 118 ,(2000) , 10.1002/1438-826X(200010)1:3/4<109::AID-GNFD109>3.0.CO;2-O
U. Wittig, R. Kania, M. Golebiewski, M. Rey, L. Shi, L. Jong, E. Algaa, A. Weidemann, H. Sauer-Danzwith, S. Mir, O. Krebs, M. Bittkowski, E. Wetsch, I. Rojas, W. Muller, SABIO-RK—database for biochemical reaction kinetics Nucleic Acids Research. ,vol. 40, pp. 790- 796 ,(2012) , 10.1093/NAR/GKR1046
J.S. Edwards, B.O. Palsson, Robustness analysis of the Escherichia coli metabolic network. Biotechnology Progress. ,vol. 16, pp. 927- 939 ,(2000) , 10.1021/BP0000712
Jörg Hakenberg, Sebastian Schmeier, Axel Kowald, Edda Klipp, Ulf Leser, Finding Kinetic Parameters Using Text Mining OMICS: A Journal of Integrative Biology. ,vol. 8, pp. 131- 152 ,(2004) , 10.1089/1536231041388366
K. Bretonnel Cohen, Lawrence Hunter, Getting started in text mining. PLOS Computational Biology. ,vol. 4, ,(2008) , 10.1371/JOURNAL.PCBI.0040020
Kiran Raosaheb Patil, Mats Åkesson, Jens Nielsen, Use of genome-scale microbial models for metabolic engineering Current Opinion in Biotechnology. ,vol. 15, pp. 64- 69 ,(2004) , 10.1016/J.COPBIO.2003.11.003
Raul Rodriguez-Esteban, Biomedical Text Mining and Its Applications PLoS Computational Biology. ,vol. 5, pp. e1000597- ,(2009) , 10.1371/JOURNAL.PCBI.1000597