Prediction of mode-I overload-induced fatigue crack growth rates using neuro-fuzzy approach

作者: J.R. Mohanty , B.B. Verma , P.K. Ray , D.R.K. Parhi

DOI: 10.1016/J.ESWA.2009.09.022

关键词:

摘要: A methodology has been developed to predict fatigue crack propagation life of 7020 T7 and 2024 T3 aluminum alloys under constant amplitude loading interspersed with mode-I spike overload. It assessed by adopting adaptive neuro-fuzzy inference system (ANFIS), a novel soft-computing approach, suitable for non-linear, noisy complex problems like fatigue. The proposed model proved its efficiency quite satisfactorily compared authors' previously 'Exponential Model', when tested on both the alloys.

参考文章(25)
J. Willenborg, R. M. Engle, H. A. Wood, A Crack Growth Retardation Model Using an Effective Stress Concept Defense Technical Information Center. ,(1971) , 10.21236/ADA956517
B. L. Yoon, Artificial neural network technology ACM Sigsmall\/pc Notes. ,vol. 15, pp. 3- 16 ,(1989) , 10.1145/74657.74658
K SADANANDA, Analysis of overload effects and related phenomena International Journal of Fatigue. ,vol. 21, pp. 233- 246 ,(1999) , 10.1016/S0142-1123(99)00094-8
B Lee, fatigue analysis under variable amplitude loading using an energy parameter International Journal of Fatigue. ,vol. 25, pp. 621- 631 ,(2003) , 10.1016/S0142-1123(02)00169-X
T.Todd Pleune, Omesh K Chopra, Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels Nuclear Engineering and Design. ,vol. 197, pp. 1- 12 ,(2000) , 10.1016/S0029-5493(99)00252-6
E.H. MAMDANI, S. ASSILIAN, An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller International Journal of Human-computer Studies \/ International Journal of Man-machine Studies. ,vol. 51, pp. 135- 147 ,(1999) , 10.1006/IJHC.1973.0303
Anastasios P. Vassilopoulos, Raman Bedi, Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates Computational Materials Science. ,vol. 43, pp. 1086- 1093 ,(2008) , 10.1016/J.COMMATSCI.2008.02.028
Y. Cheng, W.L. Huang, C.Y. Zhou, Artificial neural network technology for the data processing of on-line corrosion fatigue crack growth monitoring International Journal of Pressure Vessels and Piping. ,vol. 76, pp. 113- 116 ,(1999) , 10.1016/S0308-0161(98)00136-7