Geometrothermodynamics of black holes

作者: Hernando Quevedo

DOI: 10.1007/S10714-007-0586-0

关键词:

摘要: The thermodynamics of black holes is reformulated within the context recently developed formalism geometrothermodynamics. This reformulation shown to be invariant with respect Legendre transformations, and allow several equivalent representations. invariance allows us explain a series contradictory results known in literature from use Weinhold’s Ruppeiner’s thermodynamic metrics for holes. For Reissner–Nordstrom hole geometry space equilibrium states curved, showing non trivial interaction, curvature contains information about critical points phase transitions. On contrary, Kerr flat does not its transition structure.

参考文章(41)
C. Carath�odory, Untersuchungen über die Grundlagen der Thermodynamik Mathematische Annalen. ,vol. 67, pp. 355- 386 ,(1909) , 10.1007/BF01450409
Robert Hermann, Geometry, physics, and systems ,(1973)
Dorje C. Brody, Adam Ritz, Geometric phase transitions arXiv: Condensed Matter. ,(1999)
Dorje C. Brody, Lane P. Hughston, Geometrisation of Statistical Mechanics arXiv: General Relativity and Quantum Cosmology. ,(1997)
Serge Preston, Manuel Santoro, Curvature of the Weinhold metric for thermodynamical systems with 2 degrees of freedom arXiv: Mathematical Physics. ,(2005)
Hernando Quevedo, Rubén D. Zárate, Differential geometry and thermodynamics Revista Mexicana De Fisica. ,vol. 49, pp. 125- 126 ,(2003)
Ralph Kenna, W. Janke, D. A. Johnston, Information geometry, one, two, three (and four) Acta Physica Polonica B. ,vol. 34, pp. 4923- 4937 ,(2003)
Eduard Herlt, Cornelius Hoenselaers, Hans Stephani, Malcolm MacCallum, Dietrich Kramer, Exact Solutions of Einstein's Field Equations ,(2003)
F. Weinhold, Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium Journal of Chemical Physics. ,vol. 65, pp. 559- 564 ,(1976) , 10.1063/1.433136
Dorje C. Brody, Lane P. Hughston, Geometry of thermodynamic states Physics Letters A. ,vol. 245, pp. 73- 78 ,(1998) , 10.1016/S0375-9601(98)00385-5