Spinal cord gray matter segmentation using deep dilated convolutions

作者: Julien Cohen-Adad , Julien Cohen-Adad , Evan Calabrese , Evan Calabrese , Christian S. Perone

DOI: 10.1038/S41598-018-24304-3

关键词:

摘要: Gray matter (GM) tissue changes have been associated with a wide range of neurological disorders and was also recently found relevant as biomarker for disability in amyotrophic lateral sclerosis. The ability to automatically segment the GM is, therefore, an important task modern studies spinal cord. In this work, we devise modern, simple end-to-end fully automated human cord gray segmentation method using Deep Learning, that works both on vivo ex MRI acquisitions. We evaluate our against six independently developed methods challenge report state-of-the-art results 8 out 10 different evaluation metrics well major network parameter reduction when compared traditional medical imaging architectures such U-Nets.

参考文章(36)
Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, José V Manjón, D Louis Collins, Pierrick Coupé, Alzheimer's Disease Neuroimaging Initiative, An Optimized PatchMatch for multi-scale and multi-feature label fusion NeuroImage. ,vol. 124, pp. 770- 782 ,(2016) , 10.1016/J.NEUROIMAGE.2015.07.076
Nico Papinutto, Regina Schlaeger, Valentina Panara, Eduardo Caverzasi, Sinyeob Ahn, Kevin J. Johnson, Alyssa H. Zhu, William A. Stern, Gerhard Laub, Stephen L. Hauser, Roland G. Henry, 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times Journal of Magnetic Resonance Imaging. ,vol. 42, pp. 698- 708 ,(2015) , 10.1002/JMRI.24819
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
M.J. McAuliffe, F.M. Lalonde, D. McGarry, W. Gandler, K. Csaky, B.L. Trus, Medical Image Processing, Analysis and Visualization in clinical research computer based medical systems. pp. 381- 386 ,(2001) , 10.1109/CBMS.2001.941749
Philipp Fischer, Thomas Brox, None, U-Net: Convolutional Networks for Biomedical Image Segmentation medical image computing and computer assisted intervention. pp. 234- 241 ,(2015) , 10.1007/978-3-319-24574-4_28
Alan L. Yuille, Liang-Chieh Chen, Iasonas Kokkinos, Kevin Murphy, George Papandreou, Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs arXiv: Computer Vision and Pattern Recognition. ,(2014)
Stephen M Smith, Mark Jenkinson, Mark W Woolrich, Christian F Beckmann, Timothy EJ Behrens, Heidi Johansen-Berg, Peter R Bannister, Marilena De Luca, Ivana Drobnjak, David E Flitney, Rami K Niazy, James Saunders, John Vickers, Yongyue Zhang, Nicola De Stefano, J Michael Brady, Paul M Matthews, None, Advances in functional and structural MR image analysis and implementation as FSL NeuroImage. ,vol. 23, pp. S208- S219 ,(2004) , 10.1016/J.NEUROIMAGE.2004.07.051
M.C. Yiannakas, H. Kearney, R.S. Samson, D.T. Chard, O. Ciccarelli, D.H. Miller, C.A.M. Wheeler-Kingshott, Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. NeuroImage. ,vol. 63, pp. 1054- 1059 ,(2012) , 10.1016/J.NEUROIMAGE.2012.07.048
M Jorge Cardoso, Kelvin Leung, Marc Modat, Shiva Keihaninejad, David Cash, Josephine Barnes, Nick C Fox, Sebastien Ourselin, None, STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation Medical Image Analysis. ,vol. 17, pp. 671- 684 ,(2013) , 10.1016/J.MEDIA.2013.02.006
Benjamin De Leener, Samuel Kadoury, Julien Cohen-Adad, Robust, accurate and fast automatic segmentation of the spinal cord. NeuroImage. ,vol. 98, pp. 528- 536 ,(2014) , 10.1016/J.NEUROIMAGE.2014.04.051