Self-avoiding walks in two to five dimensions: exact enumerations and series study

作者: D MacDonald , D L Hunter , K Kelly , N Jan

DOI: 10.1088/0305-4470/25/6/006

关键词:

摘要: The method of concatenation (the addition precomputed shorter chains to the ends a centrally generated longer chain) has permitted extension exact series for CN-the number distinct configurations self-avoiding walks length N. authors report on leading exponent y and xc reciprocal connectivity constant) 2D honeycomb lattice (42 terms) 1.3437, 0.541 1968; square (30 1.3436, 0.379 0520; 3D simple cubic (23 1.161 932, 0.213 4987; 4D hypercubic (18 approximately=1, 0.147 60 5D (13 y

参考文章(25)
Joel Louis Lebowitz, Cyril Domb, Melville S. Green, Phase Transitions and Critical Phenomena ,(1972)
M E Fisher, H Au-Yang, Inhomogeneous differential approximants for power series Journal of Physics A. ,vol. 12, pp. 1677- 1692 ,(1980) , 10.1088/0305-4470/12/10/014
Joan Adler, Moshe Moshe, Vladimir Privman, New method for analyzing confluent singularities and its application to two-dimensional percolation Physical Review B. ,vol. 26, pp. 1411- 1415 ,(1982) , 10.1103/PHYSREVB.26.1411
S McKenzie, Self-avoiding walks on the face-centred cubic lattice Journal of Physics A. ,vol. 12, ,(1979) , 10.1088/0305-4470/12/10/005
G Torrie, S G Whittington, Exact enumeration of neighbour-avoiding walks on the tetrahedral and body-centred cubic lattices Journal of Physics A. ,vol. 8, pp. 1178- 1184 ,(1975) , 10.1088/0305-4470/8/7/022
Michael E. Fisher, M. F. Sykes, Excluded-Volume Problem and the Ising Model of Ferromagnetism Physical Review. ,vol. 114, pp. 45- 58 ,(1959) , 10.1103/PHYSREV.114.45
Bernard Nienhuis, Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions Physical Review Letters. ,vol. 49, pp. 1062- 1065 ,(1982) , 10.1103/PHYSREVLETT.49.1062