Venn Diagrams and Independent Families of Sets.

作者: Branko Grünbaum

DOI: 10.2307/2689288

关键词:

摘要: Abstract : Motivated by the well known notions from probability and logic, author says that a family of n simple closed curves (A sub 1),...,(A n) in Euclidean plane is independent provided intersection (*) (X 1)(X 2)...(X non-empty whenever each set j) either interior or else exterior j). An Venn diagram if connected. These are examined point view combinatorial geometry several results obtained; some them correct erroneous assertion found literature. (Modified abstract)

参考文章(13)
Lynette J. Bowles, Logic Diagrams for up to n Classes. The Mathematical Gazette. ,vol. 55, pp. 370- ,(1971) , 10.2307/3612360
Edward Marczewski, Indépendance d'ensembles et prolongement de mesures (Résultats et problèmes) Colloquium Mathematicum. ,vol. 1, pp. 122- 132 ,(1948) , 10.4064/CM-1-2-122-132
B. Węglorz, Nerves and set-theoretical independence Colloquium Mathematicum. ,vol. 13, pp. 17- 19 ,(1964) , 10.4064/CM-13-1-17-19
J. Anusiak, On set-theoretically independent collections of balls Colloquium Mathematicum. ,vol. 13, pp. 223- 233 ,(1964) , 10.4064/CM-13-2-223-233
A. Rényi, C. Rényi, J. Surányi, Sur l'indépendance de domaines simples dans l'espace euclidien à n dimensions Colloquium Mathematicum. ,vol. 2, pp. 130- 135 ,(1951) , 10.4064/CM-2-2-130-135
J. Barkley Rosser, Logic for mathematicians ,(1978)
Patrick Suppes, Introduction to logic ,(1957)
David W. Henderson, Venn Diagrams for More than Four Classes The American Mathematical Monthly. ,vol. 70, pp. 424- ,(1963) , 10.2307/2311865
Trenchard More, On the construction of venn diagrams Journal of Symbolic Logic. ,vol. 24, pp. 303- 304 ,(1959) , 10.2307/2963899
Sidney Heller, A. K. Austin, Richard Stanley, R. S. Luthar, Thomas Hughes, Elementary Problems: E2313-E2318 American Mathematical Monthly. ,vol. 78, pp. 904- ,(1971) , 10.2307/2316495