A Practical Formulation for Computation of Complex Gradients and its Application to Maximum Likelihood ICA

作者: Tilay Adall , Hualiang Li

DOI: 10.1109/ICASSP.2007.366315

关键词:

摘要: We introduce a framework for complex-valued signal processing such that all computations can be directly carried out in the complex domain. The framework, based on an elegant result due to Brandwood, allows easy derivation of many algorithms and their efficient analyses. demonstrate its application relative gradient updates independent component analysis using maximum likelihood discuss selection score functions within this framework.

参考文章(20)
Anne-Mari Seppola, Visa Koivunen, Jan Eriksson, Complex ICA for circular and non-circular sources european signal processing conference. pp. 1- 4 ,(2005)
Shun-ichi Amari, Natural gradient works efficiently in learning Neural Computation. ,vol. 10, pp. 177- 202 ,(1998) , 10.1162/089976698300017746
ELLA BINGHAM, AAPO HYVÄRINEN, A fast fixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems. ,vol. 10, pp. 1- 8 ,(2000) , 10.1142/S0129065700000028
J.-F. Cardoso, B.H. Laheld, Equivariant adaptive source separation IEEE Transactions on Signal Processing. ,vol. 44, pp. 3017- 3030 ,(1996) , 10.1109/78.553476
Paris Smaragdis, Blind separation of convolved mixtures in the frequency domain Neurocomputing. ,vol. 22, pp. 21- 34 ,(1998) , 10.1016/S0925-2312(98)00047-2
P.O. Amblard, M. Gaeta, J.L. Lacoume, Statistics for complex variables and signals—Part I: variables Signal Processing. ,vol. 53, pp. 1- 13 ,(1996) , 10.1016/0165-1684(96)00071-0
A. van den Bos, Complex gradient and Hessian IEE Proceedings - Vision, Image, and Signal Processing. ,vol. 141, pp. 380- 382 ,(1994) , 10.1049/IP-VIS:19941555
T. Adali, Taehwan Kim, V. Calhoun, Independent component analysis by complex nonlinearities international conference on acoustics, speech, and signal processing. ,vol. 5, pp. 525- 528 ,(2004) , 10.1109/ICASSP.2004.1327163
Anthony J. Bell, Terrence J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution Neural Computation. ,vol. 7, pp. 1129- 1159 ,(1995) , 10.1162/NECO.1995.7.6.1129
Jörn Anemüller, Terrence J. Sejnowski, Scott Makeig, Complex independent component analysis of frequency-domain electroencephalographic data Neural Networks. ,vol. 16, pp. 1311- 1323 ,(2003) , 10.1016/J.NEUNET.2003.08.003