Kernel-based relevant feature extraction to support Motor Imagery classification

作者: L. Arias-Mora , L. Lopez-Rios , Y. Cespedes-Villar , L. F. Velasquez-Martinez , A. M. Alvarez-Meza

DOI: 10.1109/STSIVA.2015.7330403

关键词:

摘要: Brain Computer Interface (BCI) has become one of the most interesting alternatives to support automatic systems able interpret brain functions. Recently, Motor Imagery (MI) paradigm is a widely topic interest as tool develop BCI-based systems. Here, we present relevant feature extraction methodology, termed MI discrimination using kernel relevance analysis (MIDKRA), classification in BCI For such purpose, similarity criterion rank contribution EEG features for classifying an employed. The introduced approach includes supervised information regarding find out set encoding discriminative information. We model recordings by considering both time and time-frequency representations. Moreover, k nearest-neighbor classifier carried validate proposed approach. Experimental results on two different databases, well-known public data Emotiv-based dataset built us, demonstrate that MIDKRA outperforms state art methods it suitable alternative straightforward

参考文章(18)
Luisa F. Velásquez-Martínez, A. M. Álvarez-Meza, C. G. Castellanos-Domínguez, Motor Imagery Classification for BCI Using Common Spatial Patterns and Feature Relevance Analysis international work-conference on the interplay between natural and artificial computation. pp. 365- 374 ,(2013) , 10.1007/978-3-642-38622-0_38
Hiroshi Higashi, Toshihisa Tanaka, Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces Computational Intelligence and Neuroscience. ,vol. 2013, pp. 537218- 537218 ,(2013) , 10.1155/2013/537218
A. M. Alvarez-Meza, L. F. Velasquez-Martinez, G. Castellanos-Dominguez, Feature relevance analysis supporting automatic motor imagery discrimination in EEG based BCI systems international conference of the ieee engineering in medicine and biology society. ,vol. 2013, pp. 7068- 7071 ,(2013) , 10.1109/EMBC.2013.6611186
Sam Darvishi, Michael C. Ridding, Derek Abbott, Mathias Baumert, Investigation of the trade-off between time window length, classifier update rate and classification accuracy for restorative brain-computer interfaces international conference of the ieee engineering in medicine and biology society. ,vol. 2013, pp. 1567- 1570 ,(2013) , 10.1109/EMBC.2013.6609813
A.M. Alvarez-Meza, L.F. Velasquez-Martinez, G. Castellanos-Dominguez, Time-series discrimination using feature relevance analysis in motor imagery classification Neurocomputing. ,vol. 151, pp. 122- 129 ,(2015) , 10.1016/J.NEUCOM.2014.07.077
Germán Rodríguez-Bermúdez, Pedro J. García-Laencina, Automatic and Adaptive Classification of Electroencephalographic Signals for Brain Computer Interfaces Journal of Medical Systems. ,vol. 36, pp. 51- 63 ,(2012) , 10.1007/S10916-012-9893-4
Lin Yao, Jianjun Meng, Dingguo Zhang, Xinjun Sheng, Xiangyang Zhu, Combining Motor Imagery With Selective Sensation Toward a Hybrid-Modality BCI IEEE Transactions on Biomedical Engineering. ,vol. 61, pp. 2304- 2312 ,(2014) , 10.1109/TBME.2013.2287245
Wei He, Pengfei Wei, Liping Wang, Yuexian Zou, None, A novel EMD-based Common Spatial Pattern for motor imagery brain-computer interface ieee embs international conference on biomedical and health informatics. pp. 216- 219 ,(2012) , 10.1109/BHI.2012.6211549
Austin J. Brockmeier, John S. Choi, Evan G. Kriminger, Joseph T. Francis, Jose C. Principe, Neural decoding with kernel-based metric learning Neural Computation. ,vol. 26, pp. 1080- 1107 ,(2014) , 10.1162/NECO_A_00591
Rebeca Corralejo, Roberto Hornero, Daniel Alvarez, Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface international conference of the ieee engineering in medicine and biology society. ,vol. 2011, pp. 7703- 7706 ,(2011) , 10.1109/IEMBS.2011.6091898